【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變為原來的2倍,得到曲線,求曲線
上的點到直線l的距離的最大值.
科目:高中數學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設中心在原點,焦點在軸上的橢圓
過點
,且離心率為
.
為
的右焦點,
為
上一點,
軸,
的半徑為
.
(1)求和
的方程;
(2)若直線與
交于
兩點,與
交于
兩點,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以
軸為始邊做兩個銳角
,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(其中
,
,
)的圖象的兩條相鄰對稱軸之間的距離為
,且圖象上一個最低點為
.
(1)求函數的解析式;
(2)當時,求函數
的值域;
(3)若方程在
上有兩個不相等的實數根
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為4,且經過點
.
(1)求橢圓的方程;
(2)直線的斜率為
,且與橢圓相交于
,
兩點(異于點
),過
作
的角平分線交橢圓于另一點
.
(i)證明:直線與坐標軸平行;
(ii)當時,求四邊形
的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某人承包了一塊矩形土地用來種植草莓,其中
m,
m.現規劃建造如圖所示的半圓柱型塑料薄膜大棚
個,每個半圓柱型大棚的兩半圓形底面與側面都需蒙上塑料薄膜(接頭處忽略不計),塑料薄膜的價格為每平方米
元;另外,還需在每個大棚之間留下
m寬的空地用于建造排水溝與行走小路(如圖中
m),這部分建設造價為每平方米
元.
(1)當時,求蒙一個大棚所需塑料薄膜的面積;(本小題結果保留
)
(2)試確定大棚的個數,使得上述兩項費用的和最低?(本小題計算中取
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于三次函數,給出定義:設
是函數
的導數,
是
的導數,若方程
有實數解
,則稱點
為函數
的“拐點”.經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.設函數
.
(1)當時,求
的值;
(2)若不等式恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com