若sin(-α)=-
,sin(
+β)=
,其中
<α<
,
<β<
,求 角(α+β)的值.
α+β=。
解析試題分析:先由<α<
,
<β<
可知-
<
-α<0,
<
+β<
,
從而可由sin(-α),sin(
+β)求出cos(
-α),cos(
+β),
然后再利用cos(α+β)=cos[(+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)代入求值,再根據
<α+β<π,從而確定α+β的值.
∵<α<
,-
<
-α<0,
<β<
,
<
+β<
(3分)
由已知可得cos(-α)=
,cos(
+β)=-
則cos(α+β)=cos[(+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)=-
×
+
×(-
)=-
,…………(9分)
∵<α+β<π ∴α+β=
…………(12分).
考點:給值求角,兩角差的余弦公式.
點評:解本小題首先要利用同角的三角函數的平方關系求出余角的值,一定要把角的范圍搞清楚,然后再注意利用α+β=(+β)-(
-α)把未知角用已知角表示出來,借助兩角差的余弦公式求解即可.
科目:高中數學 來源: 題型:解答題
(本題滿分12分,每小題6分)
(1)若為基底向量,且
若A、B、D三點共線,求實數k的值;
(2)用“五點作圖法”在已給坐標系中畫出函數一個周期內的簡圖,并指出該函數圖象是由函數
的圖象進行怎樣的變換而得到的?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com