分析 (1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可;
(2)根據函數的單調性求出端點值和極值,從而求出f(x)的最小值,得到關于a的不等式,求出a的范圍即可.
解答 解:(1)f′(x)=3x2-6x-9,
令f′(x)>0,解得:x<-1或x>3,
令f′(x)<0,解得:-1<x<3,
故函數f(x)的單調增區間為(-∞,-1),(3,+∞),單調減區間為(-1,3);
(2)由(1)知f(x)在[-2,-1]上單調遞增,在[-1,3]上單調遞減,在[3,4]上單調遞增,
又f(-2)=-1,f(3)=-26,f(3)<f(-2),
∴f(x)min=-26,
∵f(x)-2a+1≥0對?x∈[-2,4]恒成立,
∴f(x)min≥2a-1,即2a-1≤-26,
∴a≤-$\frac{25}{2}$.
點評 本題考查了函數的單調性、最值問題,考查導數的應用,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充要條件 | B. | 既不充分也不必要條件 | ||
C. | 充分條件 | D. | 必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30 | B. | 31 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
人數 | 數學 | |||
優秀 | 良好 | 及格 | ||
地理 | 優秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com