分析 (1)求出f(x)的解析式,對x討論,化簡f(x),再解不等式,最后求并集即可;
(2)運用絕對值不等式的性質,結合基本不等式,可得f(x)的最小值,再由不等式恒成立思想,可令m不大于最小值,即可得到m的最大值.
解答 解:(1)若a=3,則f(x)=|2x+1|+|2x-6|≥|2x+1-2x+6|=7>4,
故不等式的解集是R;
(2)f(x)=|2x+$\frac{3}{a}$|+2|x-a|≥|(2x+$\frac{3}{a}$)+(2a-2x)|=|$\frac{3}{a}$+2a|=2a+$\frac{3}{a}$≥2$\sqrt{2a•\frac{3}{a}}$=2$\sqrt{6}$,
當且僅當2a=$\frac{3}{a}$即a=$\sqrt{6}$時,取得最小值2$\sqrt{6}$.
由于任意x∈R,f(x)≥m恒成立,
則m≤2$\sqrt{6}$
即有m的最大值為2$\sqrt{6}$.
點評 本題考查絕對值不等式的解法,考查分類討論的思想方法,考查不等式的恒成立問題轉化為求函數的最值,考查基本不等式的運用,考查運算能力,屬于中檔題和易錯題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $±\frac{{\sqrt{3}}}{2}$ | D. | $±\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
分數 | [0,90) | [90,105) | [105,1200) | [120,135) | [135,150) |
甲班頻數 | 5 | 6 | 4 | 4 | 1 |
乙班頻數 | 1 | 3 | 6 | 5 |
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若α∩β=a,β∩γ=b,a∥b,則α∥γ | B. | 若a∥α,a∥β,b∥α,b∥β,則α∥β | ||
C. | 若α⊥β,α∩β=a,b?β,a⊥b,則b⊥α | D. | 若a?α,b?α,l⊥α,l⊥b,則l⊥α |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com