若數列的各項均為正數,
,
為常數,且
.
(1)求的值;
(2)證明:數列為等差數列;
(3)若,對任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使
,
,
成等差數列?若存在,用k分別表示一組p和r;若不存在,請說明理由.
(1)2(2)詳見解析(3)當k=1時,不存在p,r;當k≥2時,存在一組p=2k-1,r=k(2k-1)滿足題意.
【解析】
試題分析:(1)令,得
①,令
,得
②,①—②,得
,
,
(2)證明數列為等差數列,一般利用定義進行證明,由(1)推導過程知:
,
,兩式相減得
數列
為常數數列,
,
數列
為等差數列(3)先求數列
通項公式:由(2)知,數列
為等差數列,設公差為
,則由條件
,得
,又數列
的各項為正數,
,
,
若存在p,r使,
,
成等差數列,則
所以
;當k=1時,
,舍去;當k≥2時,令p=2k-1得r=kp=k(2k-1),滿足k<p<r.
試題解析:【解析】
(1)由條件,設
令,得
①,令
,得
②
①—②,得 ,
,
4分
(2),
,
兩式相減得 7分
數列
為常數數列,
,
數列
為等差數列. 10分
(3)由(2)知,數列為等差數列,設公差為
,
則由條件,得
,又數列
的各項為正數,
,
,
. 12分
當k=1時,若存在p,r使,
,
成等差數列,則
與矛盾.因此,當k=1時,不存在. 14分
當k≥2時,則所以
令p=2k-1得r=kp=k(2k-1),滿足k<p<r.
綜上所述,當k=1時,不存在p,r;
當k≥2時,存在一組p=2k-1,r=k(2k-1)滿足題意. 16分
考點:等差數列
科目:高中數學 來源:2014-2015學年黑龍江省綏化市三校高二上學期期中聯考數學試卷(解析版) 題型:選擇題
函數在
上是單調遞減函數的必要不充分條件是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源:2014-2015學年江蘇省等五校高三12月第一次聯考理科數學試卷(解析版) 題型:解答題
(本小題滿分10分)袋中裝有大小相同的黑球和白球共9個,從中任取2個都是白球的概率為.現甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取 ,每次摸取1個球,取出的球不放回,直到其中有一人取到白球時終止.用X表示取球終止時取球的總次數.
(1)求袋中原有白球的個數;
(2)求隨機變量X的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源:2014-2015學年江蘇省等五校高三12月第一次聯考理科數學試卷(解析版) 題型:解答題
已知函數.
(1)求的最小正周期;
(2)若將的圖像向左平移
個單位,得到函數
的圖像,求函數
在區間
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源:2014-2015學年江蘇省等五校高三12月第一次聯考理科數學試卷(解析版) 題型:填空題
設是空間的不同直線或不同平面,下列條件中能保證“若
,且
,則
”為真命題的是 . (填所正確條件的代號)
①為直線;
②為平面;
③為直線,
為平面;
④為直線,
為平面.
查看答案和解析>>
科目:高中數學 來源:2015屆江蘇教育學院附屬高中高三上學期期中文科數學試卷(解析版) 題型:填空題
定義在(-1,1)上的函數f(x)=-3x+sinx,如果f(1-a)+f(1-a2)>0,則實數的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源:2014-2015學年浙江省嘉興市高三新高考單科綜合調研三文科數學試卷(解析版) 題型:填空題
已知平行四邊形中,
為
的中點,
,
,其中
,且均不為0,若
,則
= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com