分析 (1)求出曲線的斜率,切點坐標,求出函數的導數,利用導函數值域斜率的關系,即可求出a,b.
(2)求出導函數的符號,判斷函數的單調性以及求解閉區間的函數的最值.
解答 解:(1)因為在點M(1,f(1))處的切線方程為9x+3y-10=0,
所以切線斜率是k=-3----------------------(1分)
且9×1+3f(1)-10=0,
求得$f(1)=\frac{1}{3}$,即點$M(1,\;\frac{1}{3})$----------------------(2分)
又函數$f(x)=\frac{1}{3}{x^3}-ax+b$,則f′(x)=x2-a----------------------(3分)
所以依題意得$\left\{{\begin{array}{l}{{f^′}(1)=1-a=-3}\\{f(1)=\frac{1}{3}-a+b=\frac{1}{3}}\end{array}}\right.$----------------------(5分)
解得$\left\{{\begin{array}{l}{a=4}\\{b=4}\end{array}}\right.$----------------------(6分)
(2)由(1)知$f(x)=\frac{1}{3}{x^3}-4x+4$
所以f′(x)=x2-4=(x+2)(x-2)----------------------(7分)
令f′(x)=0,解得x=2或x=-2
當f′(x)>0⇒x>2或x<-2;當f′(x)<0⇒-2<x<2
所以函數f(x)的單調遞增區間是(-∞,2),(2,+∞)
單調遞減區間是(-2,2)----------------------(9分)
又x∈[0,3]
所以當x變化時,f(x)和f′(x)變化情況如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | 0 | |
f(x) | 4 | ↘ | 極小值$-\frac{4}{3}$ | ↗ | 1 |
點評 本題考查函數的導數的應用,切線方程以及閉區間上函數的最值求法,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-∞,0) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 57 | B. | 59 | C. | 61 | D. | 63 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com