【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線
的極坐標方程為
,直線
的參數方程為
(
為參數,
為直線的傾斜角).
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
有唯一的公共點,求角
的大小.
科目:高中數學 來源: 題型:
【題目】甲、乙兩企業生產同一種型號零件,按規定該型號零件的質量指標值落在內為優質品.從兩個企業生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:
甲企業:
乙企業:
(1)已知甲企業的500件零件質量指標值的樣本方差,該企業生產的零件質量指標值
服從正態分布
,其中
近似為質量指標值的樣本平均數
(注:求
時,同一組數據用該區間的中點值作代表),
近似為樣本方差
,試根據該企業的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)
(2)由以上統計數據完成下面列聯表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.
附注:
參考數據: ,
參考公式: ,
,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間有關系,某農科所對此關系進行了調查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天100顆種子中的發芽數,得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式: ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知函數是自然對數的底數,
.
(1)求函數的單調遞增區間;
(2)若為整數,
,且當
時,
恒成立,其中
為
的導函數,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1) 求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數大于去參加乙游戲的人數的概率;
(3)用分別表示這4個人中去參加甲、乙游戲的人數,記
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com