【題目】甲、乙兩企業生產同一種型號零件,按規定該型號零件的質量指標值落在內為優質品.從兩個企業生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:
甲企業:
乙企業:
(1)已知甲企業的500件零件質量指標值的樣本方差,該企業生產的零件質量指標值
服從正態分布
,其中
近似為質量指標值的樣本平均數
(注:求
時,同一組數據用該區間的中點值作代表),
近似為樣本方差
,試根據該企業的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)
(2)由以上統計數據完成下面列聯表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.
附注:
參考數據: ,
參考公式: ,
,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)0.159.(2)見解析.
【解析】試題分析:
(1)由題意求得,
,結合概率的性質可得甲企業零件質量指標值不低于71.92的產品的概率為0.159.
(2)寫出列聯表,計算可得
對照臨界值表得出,在犯錯的概率不超過0.01的前提下,認為“兩個分廠生產的產品的質量有差異”.
試題解析:
(1)依據上述數據,甲廠產品質量指標值的平均值為:
,
所以,
,
即甲企業生產的零件質量指標值服從正態分布
,
又,則,
,
,
所以,甲企業零件質量指標值不低于71.92的產品的概率為0.159.
(2)由以上統計數據填寫列聯表,如下:
計算
對照臨界值表得出,在犯錯的概率不超過0.01的前提下,認為“兩個分廠生產的產品的質量有差異”.
科目:高中數學 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數據表格如下:
(Ⅰ)求此活動中各公園幸運之星的人數;
(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調查,統計結果如下(單位:人):
據此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關.
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的一個社會實踐調查小組,在對該校學生的良好“用眼習慣”的調查中,隨機發放了120分問卷.對收回的100份有效問卷進行統計,得到如下列聯表:
做不到科學用眼 | 能做到科學用眼 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數,試求隨機變量
的分布列和數學期望;
(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關,那么根據臨界值表,最精確的
的值應為多少?請說明理由.
附:獨立性檢驗統計量,其中
.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為美化小區環境,某社區針對公民亂扔垃圾的現象進行了罰款處罰,并隨機抽取了200人進行調查,得到如下數據:
(1)若亂扔垃圾的人數與罰款金額
(單位:元)滿足線性回歸關系,求回歸方程;
(2)由(1)得到的回歸方程分析要使亂扔垃圾的人數不超過,罰款金額至少是多少元?
參考公式:兩個具有線性關系的變量的一組數據: ,
其回歸方程為,其中
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、
、
、
四首不同曲目中任選一首.
(1)求甲、乙兩班選擇不同曲目的概率;
(2)設這四個班級總共選取了首曲目,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為自然對數的底數).
(1)設曲線在
處的切線為
,若
與點
的距離為
,求
的值;
(2)若對于任意實數,
恒成立,試確定
的取值范圍;
(3)當時,函數
在
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線
的極坐標方程為
,直線
的參數方程為
(
為參數,
為直線的傾斜角).
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
有唯一的公共點,求角
的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com