【題目】已知函數,
(
為自然對數的底數).
(1)設曲線在
處的切線為
,若
與點
的距離為
,求
的值;
(2)若對于任意實數,
恒成立,試確定
的取值范圍;
(3)當時,函數
在
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
【答案】(1) 或
(2)
(3)不存在
【解析】試題分析:
(1)該問切點橫坐標已知,則利用切點在曲線上,帶入曲線即可得到切點的縱坐標,對
進行求導并得到在切點處的導函數值即為切線的斜率,有切線的斜率,切線又過切點,利用直線的點斜式即可求的切線的方程,利用點到直線的距離公式結合條件點
到切線的距離為
即可求的參數
的值.
(2)該問為恒成立問題可以考慮分離參數法,即把參數a與x進行分離得到,則
,再利用函數的導函數研究函數
在區間
的最大值,即可求的a的取值范圍.
(3)根據極值的定義,函數在區間
有零點且在零點附近的符號不同,求導可得
,設
,求
求導可以得到
的導函數在區間
恒為正數,則函數
在區間
上是單調遞增,即可得到函數
進而得到
恒成立,即
在區間
上沒有零點,進而函數
沒有極值.
試題解析:
(1),
.
在
處的切線斜率為
, 1分
∴切線的方程為
,即
. 3分
又切線與點
距離為
,所以
,
解之得, 或
5分
(2)∵對于任意實數恒成立,
∴若,則
為任意實數時,
恒成立; 6分
若
恒成立,即
,在
上恒成立, 7分
設則
, 8分
當時,
,則
在
上單調遞增;
當時,
,則
在
上單調遞減;
所以當時,
取得最大值,
, 9分
所以的取值范圍為
.
綜上,對于任意實數恒成立的實數
的取值范圍為
. 10分
(3)依題意, ,
所以, 2分
設,則
,當
,
故在
上單調增函數,因此
在
上的最小值為
,
即, 12分
又所以在
上,
,
即在
上不存在極值. 14分
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
作
,交直線
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),直線
與曲線
相交于
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩企業生產同一種型號零件,按規定該型號零件的質量指標值落在內為優質品.從兩個企業生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:
甲企業:
乙企業:
(1)已知甲企業的500件零件質量指標值的樣本方差,該企業生產的零件質量指標值
服從正態分布
,其中
近似為質量指標值的樣本平均數
(注:求
時,同一組數據用該區間的中點值作代表),
近似為樣本方差
,試根據該企業的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)
(2)由以上統計數據完成下面列聯表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.
附注:
參考數據: ,
參考公式: ,
,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(
,
)展開式的前三項的二項式系數之和為16,所有項的系數之和為1.
(1)求和
的值;
(2)展開式中是否存在常數項?若有,求出常數項;若沒有,請說明理由;
(3)求展開式中二項式系數最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年來,我國許多地區經常出現干旱現象,為抗旱經常要進行人工降雨,現由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為
,5天內任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天數的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數,滿足100分)進行統計制表,其中成績不低于80分的考生被評為優秀生,請根據頻率分布表中所提供的數據,用頻率估計概率,回答下列問題.
分組 | 頻數 | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值及隨機抽取一考生恰為優秀生的概率;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優秀生的人數;
(3)在第(2)問抽取的優秀生中指派2名學生擔任負責人,求至少一人的成績在的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com