【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
作
,交直線
于點
,求證:
.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:(1)由題中條件要得兩個等式,再由橢圓中的等式關系可得
的值,求得橢圓的方程;
(2)可設直線的方程,聯立橢圓方程,由根與系數的關系得
,所以直線
的方程是
.令
,得
, 得直線
的斜率是
,問題得解.
試題解析:
(Ⅰ)設橢圓的半焦距為
.依題意,得
,
.
解得 ,
.所以
,所以橢圓
的方程是
.
(Ⅱ)解法一:由(Ⅰ)得 .設
的中點
,
.
設直線的方程為:
,將其代入橢圓方程,整理得
,所以
.所以
,
,
即 .所以直線
的斜率是
,
所以直線的方程是
.令
,得
.
由,得直線
的斜率是
,
因為,所以直線
的斜率為
,所以直線
.
解法二:由(Ⅰ)得 .設
,其中
.
因為的中點為
,所以
.所以直線
的斜率是
,所以直線
的方程是
.令
,得
.
由,得直線
的斜率是
.因為直線
的斜率是
,所以
,所以
.因為
,所以
.
點晴:本題主要考查直線與圓錐曲線位置關系. 直線和圓錐曲線的位置關系一方面要體現方程思想,另一方面要結合已知條件,從圖形角度求解.聯立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數的關系求解是一個常用的方法. 涉及弦長的問題中,應熟練地利用根與系數關系、設而不求法計算弦長;涉及垂直關系時也往往利用根與系數關系、設而不求法簡化運算;涉及過焦點的弦的問題,可考慮用圓錐曲線的定義求解.
科目:高中數學 來源: 題型:
【題目】某港口有一個泊位,現統計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統計結果如表:
停靠時間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)設該月100艘輪船在該泊位的平均?繒r間為小時,求
的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位停靠小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在?吭摬次粫r必須等待的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數據表格如下:
(Ⅰ)求此活動中各公園幸運之星的人數;
(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調查,統計結果如下(單位:人):
據此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關.
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
作
,交直線
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,以上頂點和右焦點為直徑端點的圓與直線
相切.
(1)求橢圓的標準方程;
(2)對于直線和點
,橢圓
上是否存在不同的兩點
與
關于直線
對稱,且
,若存在實數
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為自然對數的底數).
(1)設曲線在
處的切線為
,若
與點
的距離為
,求
的值;
(2)若對于任意實數,
恒成立,試確定
的取值范圍;
(3)當時,函數
在
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com