【題目】已知函數.
(1)當時,求曲線
在點
處的切線方程;
(2)若,求函數
的單調區間.
【答案】(1);(2)
在
單調遞減,在
單調遞增.
【解析】試題分析:(1)求導數,利用導數的幾何意義曲線在點
處的切線斜率
的值,根據點斜式可得切線方程;(2)先求出函數的導數,根據
解關于
導函數的不等式可得增區間,
解關于
的不等式,可求出函數的單調減區間.
試題解析:(1)當時,函數
,
,
∴,
∴曲線在點
處的切線方程為
.
(2).
令,解得
;
令,解得
;
∴在
單調遞減,在
單調遞增.
【方法點晴】本題主要考查利用導數求曲線切線以及及利用導數研究函數的單調性,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出在
處的導數,即
在點
出的切線斜率(當曲線
在
處的切線與
軸平行時,在 處導數不存在,切線方程為
);(2)由點斜式求得切線方程
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線
的焦點
重合,且點
到直線
的距離為
,
與
的公共弦長為
.
(1)求橢圓的方程及點
的坐標;
(2)過點的直線
與
交于
兩點,與
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四名同學根據各自的樣本數據研究變量之間的相關關系,并求得回歸直線方程和相關系數
,分別得到以下四個結論:
① ②
③ ④
其中,一定不正確的結論序號是( )
A. ②③ B. ①④ C. ①②③ D. ②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)若是定義在區間
上的“局部奇函數”,求實數
的取值范圍;
(3)若為定義域
上的“局部奇函數”,求實數
的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市英才中學的一個社會實踐調查小組,在對中學生的良好“光盤習慣”的調查中,隨機發放了120份問卷,對收回的120份有效問卷進行統計,得到如下列聯表:
做不到光盤 | 能做到光盤 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機抽取4份,并記其中能做到光盤的問卷的份數為,試求隨機變量
的分布列和數學期望;
(2)如果認為良好“光盤習慣”與性別有關犯錯誤的概率不超過,那么根據臨界值表最精確的
的值應為多少?請說明理由.
附:獨立性檢驗統計量,其中
.
獨立性檢驗臨界表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了估計某自然保護區中天鵝的數量,可以使用以下方法:先從該保護區中捕出一定數量的天鵝,例如200只,給每只天鵝做上不影響其存活的記號,然后放回保護區,經過適當的時間,讓其和保護區中其余的天鵝充分混合,再從保護區中捕出一定數量的天鵝,例如150只,查看其中有記號的天鵝,設有20只,試根據上述數據,估計該自然保護區中天鵝的數量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
作
,交直線
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),直線
與曲線
相交于
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com