日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.已知函數f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值(其中m,n為常數,且mn≠0),給出下列命題:
①$f(x+\frac{π}{4})$為偶函數                  
②函數f(x)的圖象關于點$(\frac{7π}{4},0)$對稱
③$f(-\frac{3π}{4})$是函數f(x)的最小值       
④函數f(x)的圖象在y軸右側與直線$y=\frac{m}{2}$的交點按橫坐標從小到大依次記為P1,P2,P3,P4,…,則|P2P4|=π;
則正確的命題個數為(  )
A.1個B.2個C.3個D.4個

分析 由題意可得f(x)=$\sqrt{{m}^{2}+{n}^{2}}$ sin(x+$\frac{π}{4}$),對于①,由于 f(x+$\frac{π}{4}$)=$\sqrt{{m}^{2}+{n}^{2}}$cosx,是偶函數,故①正確.
對于②,由于當x=$\frac{7π}{4}$時,f(x)=0,故②正確.
對于③,由于 f(-$\frac{3π}{4}$)=-$\sqrt{{m}^{2}+{n}^{2}}$,是 函數f(x)的最小值,故③正確.
對于④,由題意可得,|P2P4|等于一個周期2π,故 ④不正確.

解答 解:由于函數f(x)=msinx+ncosx=$\sqrt{{m}^{2}+{n}^{2}}$ sin(x+∅),且f($\frac{π}{4}$)是它的最大值,
∴$\frac{π}{4}$+∅=2kπ+$\frac{π}{2}$,k∈z,∴∅=2kπ+$\frac{π}{4}$,∴tan∅=$\frac{n}{m}$=1.
∴f(x)=$\sqrt{{m}^{2}+{n}^{2}}$ sin(x+2kπ+$\frac{π}{4}$)=$\sqrt{{m}^{2}+{n}^{2}}$ sin(x+$\frac{π}{4}$ ).
對于①,由于 f(x+$\frac{π}{4}$)=$\sqrt{{m}^{2}+{n}^{2}}$ sin(x+$\frac{π}{4}$+$\frac{π}{4}$)=$\sqrt{{m}^{2}+{n}^{2}}$cosx,是偶函數,故①正確.
對于②,由于當x=$\frac{7π}{4}$時,f(x)=0,故函數f(x)的圖象關于點($\frac{7π}{4}$,0)對稱,故②正確.
對于③,由于  f(-$\frac{3π}{4}$)=$\sqrt{{m}^{2}+{n}^{2}}$ sin(-$\frac{π}{2}$ )=-$\sqrt{{m}^{2}+{n}^{2}}$,是 函數f(x)的最小值,故 ③正確.
對于④,函數f(x)的圖象即把函數 y=$\sqrt{{m}^{2}+{n}^{2}}$sinx的圖象向左平移$\frac{π}{4}$ 個單位得到的,故|P2P4|等于一個周期2π,故 ④不正確.
故選:C.

點評 本題考查兩角和正弦公式,正弦函數的最值,對稱性,奇偶性,函數圖象的變換,得到 f(x)=$\sqrt{{m}^{2}+{n}^{2}}$sin(x+$\frac{π}{4}$ ),是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.已知拋物線C:x2=8y的焦點為F,直線y=x+2與C交于P、Q兩點,則$\frac{1}{|PF|}$+$\frac{1}{|OF|}$的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖1,由正四棱錐P-ABCD和正四棱柱ABCD-A1B1C1D1所組成的幾何體的三視圖如圖2.
(1)求證:PC⊥平面A1BD;
(2)求點P到平面A1BD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知橢圓的長半軸為6,焦點在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$;
(1)求橢圓的標準方程;
(2)求以橢圓內一點M(4,2)為中點的弦所在的直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若m?α,n?β,m∥n,則α∥β;
③若α⊥γ,β⊥γ,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
其中真命題是(  )
A.①和②B.①和③C.①和④D.③和④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F,離心率為$\frac{{\sqrt{2}}}{2}$,過點F且與x軸垂直的直線被橢圓截得的線段長為4.則該橢圓的標準方程是$\frac{x^2}{16}+\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設函數f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,g(x)=b-2f(x),若y=f(x)-g(x)恰有2個零點,則b的取值范圍是(  )
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.若函數$f(x)=\frac{x-b}{x-a}$在區間(-∞,4]上是增函數,則有(  )
A.a>b>4B.a>4>bC.4<a<bD.a<4<b

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久人人超碰 | 日韩一区二区三区在线视频 | 欧美日韩国产高清视频 | 99久久久久久久久 | 伊人精品 | 成人毛片在线视频 | 欧美日韩一区在线 | 免费黄色毛片视频 | 国产二区精品 | 欧美日韩二区三区 | 精品视频免费在线 | 日本高清视频一区二区三区 | 精品伦精品一区二区三区视频 | 日本精品一区二区 | 国产无遮挡呻吟娇喘视频 | 国产亚洲精品久 | 欧美欧美欧美 | 91精品国产91综合久久蜜臀 | 久久亚洲美女视频 | 精品国产aⅴ一区二区 | 欧美一级一级一级 | 99精品免费视频 | 亚洲成色www久久网站瘦与人 | 色婷婷亚洲 | 精品国产一级片 | 久久久网 | 综合色综合 | 久久91| 黄色在线小视频 | 色婷婷综合久久久久中文一区二 | 亚洲最大av网站 | 中文字幕亚洲在线观看 | 国产噜噜噜噜噜久久久久久久久 | 亚洲免费视频一区二区 | 亚洲第一成年免费网站 | 国产精品色一区二区三区 | 国产精品久久久久免费视频 | 国产真实精品久久二三区 | 黄网站在线免费 | 在线黄av| 亚洲精品视频在线观看免费视频 |