【題目】2019年4月10日21時整,全球六地(上海和臺北、布魯塞爾、圣地亞哥、東京和華盛頓同時召開新聞發布會,宣布人類首次利用虛擬射電望遠鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個中心為黑色的明亮環狀結構,看上去有點像個橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉的吸積盤.某同學作了一張黑洞示意圖,如圖所示,由兩個同心圓和半個同心圓環構成圓及圓環的半徑從內到外依次為2,3,4,5個單位在圖中隨機任取一點,則該點取自陰影的概率為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,以
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
相交于
兩點,與
軸相交于點
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有限個元素組成的集合,
,記集合
中的元素個數為
,即
.定義
,集合
中的元素個數記為
,當
時,稱集合
具有性質
.
(1),
,判斷集合
,
是否具有性質
,并說明理由;
(2)設集合,
且
(
),若集合
具有性質
,求
的最大值;
(3)設集合,其中數列
為等比數列,
(
)且公比為有理數,判斷集合
是否具有性質
并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某校打算在長為1千米的主干道一側的一片區域內臨時搭建一個強基計劃高校咨詢和宣傳臺,該區域由直角三角形區域
(
為直角)和以
為直徑的半圓形區域組成,點
(異于
,
)為半圓弧上一點,點
在線段
上,且滿足
.已知
,設
,且
.初步設想把咨詢臺安排在線段
,
上,把宣傳海報懸掛在弧
和線段
上.
(1)若為了讓學生獲得更多的咨詢機會,讓更多的省內高校參展,打算讓最大,求該最大值;
(2)若為了讓學生了解更多的省外高校,貼出更多高校的海報,打算讓弧和線段
的長度之和最大,求此時的
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】折紙是一項藝術,可以折出很多數學圖形.將一張圓形紙片放在平面直角坐標系中,圓心B(-1,0),半徑為4,圓內一點A為拋物線的焦點.若每次將紙片折起一角,使折起部分的圓弧的一點
始終與點A重合,將紙展平,得到一條折痕,設折痕與線段
B的交點為P.
(Ⅰ)將紙片展平后,求點P的軌跡C的方程;
(Ⅱ)已知過點A的直線l與軌跡C交于R,S兩點,當l無論如何變動,在AB所在直線上存在一點T,使得所在直線一定經過原點,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,要利用一半徑為的圓形紙片制作三棱錐形包裝盒.已知該紙片的圓心為
,先以
為中心作邊長為
(單位:
)的等邊三角形
,再分別在圓
上取三個點
,
,
,使
,
,
分別是以
,
,
為底邊的等腰三角形.沿虛線剪開后,分別以
,
,
為折痕折起
,
,
,使得
,
,
重合于點
,即可得到正三棱錐
.
(1)若三棱錐是正四面體,求
的值;
(2)求三棱錐的體積
的最大值,并指出相應
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ為常數.
(1)證明:Sn+1=2Sn+λ;
(2)是否存在實數λ,使得數列{an}為等比數列,若存在,求出λ;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓
,如圖,
分別交
軸正半軸于點
.射線
分別交
于點
,動點
滿足直線
與
軸垂直,直線
與
軸垂直.
(1)求動點的軌跡
的方程;
(2)過點作直線
交曲線
與點
,射線
與點
,且交曲線
于點
.問:
的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com