【題目】有限個元素組成的集合,
,記集合
中的元素個數為
,即
.定義
,集合
中的元素個數記為
,當
時,稱集合
具有性質
.
(1),
,判斷集合
,
是否具有性質
,并說明理由;
(2)設集合,
且
(
),若集合
具有性質
,求
的最大值;
(3)設集合,其中數列
為等比數列,
(
)且公比為有理數,判斷集合
是否具有性質
并說明理由.
【答案】(1)集合不具有性質
,集合
具有性質
,理由見解析.(2)
.(3)集合
具有性質
,理由見解析.
【解析】
(1)根據定義即可判斷,進而得出答案.
(2)運用反證法即可得出答案.
(3)設,假設當
時有
成立,進而結合反證法證明假設不成立,進而得出答案.
(1)集合不具有性質
,集合
具有性質
.
,
不具有性質
;
,
具有性質
.
(2)若三個數,
,
成等差數列,則
不具有性質
,理由是
.
因為且
(
)所以
,
要使取最大,則
;
,易知
不具有性質
,要使
取最大,
則;
,要使
取最大,檢驗可得
;
(3)集合具有性質
.
設等比數列的公比為為,所以
(
)且
為有理數,
假設當時有
成立,則有
因為
為有理數,設
(
,
)且(
,
互質),因此有
即
(1),
(1)式左邊是的倍數,右邊是
的倍數,又
,
互質,
顯然不成立.
所以,所以集合
具有性質
.
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一年度未發生有責任道路交通事故 | 下浮10% | |
上兩年度未發生有責任道路交通事故 | 下浮 | |
上三年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% | |
上一個年度發生有責任交通死亡事故 | 上浮30% | |
某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】陽馬和鱉臑(bienao)是《九章算術·商功》里對兩種錐體的稱謂.如圖所示,取一個長方體,按下圖斜割一分為二,得兩個模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個塹堵的一個頂點與相對的棱剖開,得四棱錐和三棱錐各一個,有一棱與底面垂直的四棱錐稱為陽馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐
)若將某長方體沿上述切割方法得到一個陽馬一個鱉臑,且該陽馬的正視圖和鱉臑的側視圖如圖所示,則可求出該陽馬和鱉臑的表面積之和為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】長沙市為了支援邊遠山區的教育事業,組織了一支由13名教師組成的隊伍下鄉支教,記者采訪隊長時詢問這個團隊的構成情況,隊長回答:“(1)有中學高級教師;(2)中學教師不多于小學教師;(3)小學高級教師少于中學中級教師;(4)小學中級教師少于小學高級教師;(5)支教隊伍的職稱只有小學中級、小學高級、中學中級、中學高級;(6)無論是否把我計算在內,以上條件都成立.”由隊長的敘述可以推測出他的學段及職稱分別是____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點為
,
,上、下頂點為
,
,四邊形
是面積為2的正方形.
(1)求橢圓的標準方程;
(2)已知點,過點
的直線
與橢圓交于
,
兩點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統計了每人答對的題數,將統計結果分成,
,
,
,
,
六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數據用該組區間的中點值作代表);
(2)若從答對題數在內的學生中隨機抽取2人,求恰有1人答對題數在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月10日21時整,全球六地(上海和臺北、布魯塞爾、圣地亞哥、東京和華盛頓同時召開新聞發布會,宣布人類首次利用虛擬射電望遠鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個中心為黑色的明亮環狀結構,看上去有點像個橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉的吸積盤.某同學作了一張黑洞示意圖,如圖所示,由兩個同心圓和半個同心圓環構成圓及圓環的半徑從內到外依次為2,3,4,5個單位在圖中隨機任取一點,則該點取自陰影的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB=AC=,BC=AA1=2,O,M分別為BC,AA1的中點.
(1)求證:OM∥平面CB1A1;
(2)求點M到平面CB1A1的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com