分析 (Ⅰ)由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數的解析式.
(Ⅱ)由題意利用正弦函數的單調區間,求得f(x)的單調增區間.
解答 解:(Ⅰ)根據函數f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,$-\frac{π}{2}$$<φ<\frac{π}{2}$)的部分圖象,
可得A=1,$\frac{T}{2}$=3-(-1)=4=$\frac{1}{2}$•$\frac{2π}{ω}$,∴ω=$\frac{π}{4}$.
結合五點法作圖可得$\frac{π}{4}$•(-1)+φ=0,∴φ=$\frac{π}{4}$,f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$).
(Ⅱ)令2kπ-$\frac{π}{2}$≤$\frac{π}{4}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得8k-3≤x≤8k+1,可得函數的增區間為[8k-3,8k+1],k∈Z.
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值;還考查了正弦函數的單調區間,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16種 | B. | 48種 | C. | 64種 | D. | 84種 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若a>b,則a2>b2 | B. | 若a>b,c>d,則ac>bd | ||
C. | 若a<b<0,則$\frac{1}{a}$<$\frac{1}{b}$ | D. | 若a>b>0,c<d<0,則$\frac{a}p9vv5xb5$<$\frac{b}{c}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com