分析 (I)由已知及二倍角的余弦函數公式可求cosC,利用同角三角函數基本關系式可求cosA,sinC,進而利用三角形內角和定理,兩角和的余弦函數公式可求cosB的值.
(II)由已知及正弦定理可求a=$\frac{2c}{3}$,聯立ac=24,可求a,c的值,進而利用余弦定理可求b的值.
解答 (本題滿分為12分)
解:(I)∵C=2A,sinA=$\frac{\sqrt{7}}{4}$,
∴cosC=cos2A=1-2sin2A=$\frac{1}{8}$,…3分
∵C=2A,A為銳角,可得:cosA>0,
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{3}{4}$,
又∵sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{7}}{8}$,
∴cosB=-cos(A+C)=-(cosAcosC-sinAsinC)=$\frac{9}{16}$…6分
(II)∵$\frac{a}{sinA}=\frac{c}{sinC}$,而sinA=$\frac{\sqrt{7}}{4}$,sinC=$\frac{3\sqrt{7}}{8}$,
∴a=$\frac{2c}{3}$,
又∵ac=24,
∴a=4,c=6,…9分
∴b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=5…12分
點評 本題主要考查了二倍角的余弦函數公式,同角三角函數基本關系式,三角形內角和定理,兩角和的余弦函數公式,正弦定理以及余弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,3) | C. | (-∞,-2)∪($\frac{3}{2}$,3) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 1 | C. | -1 | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1} | C. | {1} | D. | {0} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com