分析 由題意推出三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,求出球的半徑,即可求出外接球的表面積.
解答 解:∵正三棱柱ABC-A1B1C1的中,底面邊長為$\sqrt{3}$,高為2$\sqrt{2}$,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,表面積為:4πr2.
球心到底面的距離為$\sqrt{2}$,
底面中心到底面三角形的頂點的距離為:$\frac{2}{3}×\frac{\sqrt{3}}{2}×\sqrt{3}$=1,
所以球的半徑為r=$\sqrt{2+1}$.
外接球的表面積為:4πr2=12π,
故答案為:12π.
點評 本題考查空間想象能力,計算能力;三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,是本題解題的關鍵,仔細觀察和分析題意,是解好數學題目的前提.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com