A. | $\frac{4}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
分析 函數f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上單調遞減,則$\left\{\begin{array}{l}{{a}^{2}-5a<0}\\{a-1>1}\end{array}\right.$,解得2<a<5,利用幾何概型的概率計算公式即可求解
解答 解:函數f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上單調遞減,則$\left\{\begin{array}{l}{{a}^{2}-5a<0}\\{a-1>1}\end{array}\right.$,解得2<a<5
∴任取a∈(-5,5),則函數f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上單調遞減的概率為P=$\frac{5-2}{5+5}=\frac{3}{10}$.
故選:D.
點評 本題考查了幾何概型的概率計算,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a2 | B. | $\sqrt{3}{a^2}$ | C. | $\frac{{\sqrt{3}}}{6}{a^2}$ | D. | $2\sqrt{3}{a^2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com