分析 (Ⅰ)由(Sn-1)2=anSn,可得Sn=$\frac{1}{2-{S}_{n-1}}$,即可求S1,S2,S3;
(Ⅱ)猜想Sn=$\frac{n}{n+1}$,再用數學歸納法證明.
解答 解:(Ⅰ)∵(Sn-1)2=anSn,
∴(Sn-1)2=(Sn-Sn-1)Sn,
∴Sn=$\frac{1}{2-{S}_{n-1}}$,
又(S1-1)2=S12,
∴S1=$\frac{1}{2}$,S2=$\frac{2}{3}$,S3=$\frac{3}{4}$;
(Ⅱ)猜想Sn=$\frac{n}{n+1}$
下面用數學歸納法證明:
1°當n=1時,S1=$\frac{1}{2}$猜想正確;
2°假設當n=k時,猜想正確Sk+1=$\frac{1}{2-{S}_{k}}$,即Sk=$\frac{k}{k+1}$,
那么,n=k+1時,由Sk+1=$\frac{1}{2-{S}_{k}}$=$\frac{1}{2-\frac{k}{k+1}}$=$\frac{k+1}{k+1+1}$,猜想也成立,
綜上知Sn=$\frac{n}{n+1}$對一切自然數n均成立.
點評 本題考查數列遞推式,考查數列的通項,考查數學歸納法,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
優秀 | 非優秀 | |
喜歡 | 10 | 50 |
不喜歡 | 20 | 30 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{4\sqrt{2}}}{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com