日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
10.在數列{an}中,a1=1,且an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想數列{an}的通項公式的表達式,并用數學歸納法證明你的猜想.

分析 (1)利用遞推式直接求:
(2)猜想數列{an}的通項公式為${a_n}=\frac{2}{n+1}$(n∈N*)用數學歸納法證明即可.

解答 解:(Ⅰ)∵a1=1,且${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*),
∴${a_2}=\frac{{2{a_1}}}{{{a_1}+2}}=\frac{2}{1+2}=\frac{2}{3}$,${a_3}=\frac{{2{a_2}}}{{{a_2}+2}}=\frac{{2×\frac{2}{3}}}{{\frac{2}{3}+2}}=\frac{1}{2}$,
${a_4}=\frac{{2{a_3}}}{{{a_3}+2}}=\frac{{2×\frac{1}{2}}}{{\frac{1}{2}+2}}=\frac{2}{5}$.…(6分)
(Ⅱ)猜想數列{an}的通項公式為${a_n}=\frac{2}{n+1}$(n∈N*).…(9分)
用數學歸納法證明如下:
①當n=1時,左邊=a1,右邊=$\frac{2}{1+1}=1={a_1}$,因此,左邊=右邊.
所以,當n=1時,猜想成立.…(10分)
②假設n=k(k>1,k∈N*)時,猜想成立,即${a_k}=\frac{2}{k+1}$,
那么n=k+1時,${a_{k+1}}=\frac{{2{a_k}}}{{{a_k}+2}}=\frac{{2×\frac{2}{k+1}}}{{\frac{2}{k+1}+2}}=\frac{2}{(k+1)+1}$.
所以,當n=k+1時,猜想成立.…(11分)
根據①和②,可知猜想成立.…(12分)

點評 本題考查了數列中的歸納法思想,及證明基本步驟,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.下列說法正確的是(  )
A.以直角三角形一邊為軸旋轉所得的旋轉體是圓錐
B.用一個平面去截圓錐,得到一個圓錐和一個圓臺
C.正棱錐的棱長都相等
D.棱柱的側棱都相等,側面是平行四邊形

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.從區間[-2,9]中任取一個實數a,則恰使得函數f(x)=ln(ax2-2x+a)存在最大值或最小值的概率為(  )
A.$\frac{1}{11}$B.$\frac{8}{11}$C.$\frac{9}{11}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.現有某批次同一型號的產品共10件,其中有8件合格品,2件次品.
(Ⅰ)某檢驗員從中有放回地連續抽取產品2次,每次隨機抽取1件,求兩次都取到次品的概率;
(Ⅱ)若該檢驗員從中任意抽取2件,用X表示取出的2件產品中次品的件數,求X的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.四棱錐S-ABCD中SA⊥底面ABCD,ABCD是正方形,且SA=AB,若點E是SA的中點.
(1)求證:SC∥平面EBD;
(2)求二面角S-CD-B的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.設數列{an}的前n項和為Sn,且(Sn-1)2=anSn
(Ⅰ)求S1、S2、S3
(Ⅱ)猜想Sn的表達式,并用數字歸納法證明.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設△ABC的三個內角為A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),則C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的半焦距為c,(a,0)、(0,b)為直線l上兩點,已知原點到直線l的距離為$\frac{{\sqrt{3}}}{4}$c,則雙曲線的離心率為(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$或2C.2D.2或 $\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.(1)已知a,b,c均為正實數,且a+b+c=1,求證:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求證:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 97色资源 | 国产欧精精久久久久久久 | 亚洲视频在线免费观看 | 国产高清在线观看 | 日一区二区 | 久久久久久免费视频 | 中文字幕在线播放第一页 | 国产精品日韩一区二区 | a一级毛片 | 免费毛片a线观看 | 亚洲国产精品成人综合色在线婷婷 | 久久久久久久久网站 | 国产精品久久 | 国产欧美日本 | 精品视频一区二区三区 | 日韩视频免费观看 | 不卡三区 | 国产精品v欧美精品v日韩 | 国产一区亚洲 | 久久婷婷成人综合色 | 在线电影一区 | 国产一二三区在线观看 | 黄色av网站在线免费观看 | 亚洲色图一区二区三区 | 亚洲一区二区日韩 | 欧美在线播放一区 | 日本在线观看视频 | 国产96精品久久久 | 国产伦精品一区二区三区照片91 | 久久精品国产亚洲一区二区三区 | 毛片免费看 | 久久久美女 | 日本精品视频在线观看 | 成人精品一区二区三区电影黑人 | 91在线观看视频 | 女男羞羞视频网站免费 | 久久首页| 极品白嫩少妇无套内谢 | 欧美日韩高清在线观看 | 国产九九九 | 日韩黄色小视频 |