分析 由約束條件作出可行域,分類化簡y=x+$\frac{mx}{|x|}$,然后分x>0和x<0兩類求出m的取值范圍,取并集得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$作出可行域如圖,
當x>0時,y=x+$\frac{mx}{|x|}$=x+m;
當x<0時,y=x+$\frac{mx}{|x|}$=x-m.
作出直線y=x,由圖可知,當x>0時,平移y=x至A,此時y=x+m的截距m最小為-2,
向上平移y=x,可得y=x+m的截距m<2;
當x<0時,直線y=x+m的縱截距m∈(-1,2).
∴若存在x∈D,使得y=x+$\frac{mx}{|x|}$,則實數(shù)m的取值范圍是[-2,2).
故答案為:[-2,2).
點評 本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2π}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $-\frac{3}{4π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {(2,-1)} | C. | {(-1,2),(-2,1)} | D. | {(1,-2),(-1,2),(-2,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com