日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.在平面直角坐標系xoy中,已知雙曲線$\frac{{x}^{2}}{2}$-y2=1的左、右頂點分別為A1,A2,點P(x0,y0),Q(x0,-y0)是雙曲線上不同的兩個動點.
(1)求直線A1P與A2Q交點的軌跡E的方程;
(2)過坐標原點O作一條直線交軌跡E于A,B兩點,過點B作x軸的垂線,垂足為點C,連AC交軌跡E于點D,求證:AB⊥BD.

分析 (1)由直線的斜率公式與直線的點斜式方程,求出直線A1P、A2Q方程,將兩條直線方程的左右兩邊對應相乘,并利用點P(x1,y1)在雙曲線上對所得的式子化簡,整理軌跡E的方程,再對所求的軌跡加以檢驗即可得到答案.
(2)B,D代入$\frac{{x}^{2}}{2}$+y2=1,相減整理可得kAD•kBD=-$\frac{1}{2}$,證明kAB•kBD=-1,即可證明結論.

解答 (1)解:由題設知|x0|>$\sqrt{2}$,A1(-$\sqrt{2}$,0),A2($\sqrt{2}$,0),
∵直線A1P的斜率為k1=$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$,
∴直線A1P的方程為y=$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$(x+$\sqrt{2}$),…①
同理可得直線A2Q的方程為y=$\frac{-{y}_{0}}{{x}_{0}-\sqrt{2}}$(x-$\sqrt{2}$).…②
將①②兩式相乘,得y2=$\frac{{{y}_{1}}^{2}}{2-{{x}_{1}}^{2}}$(x2-2).…③
∵點P(x1,y1)在雙曲線$\frac{{x}^{2}}{2}$-y2=1上,
∴可得y12=$\frac{1}{2}$(x12-2),…④
將④代入③,得y2=$\frac{1}{2}$x2-1,整理得$\frac{{x}^{2}}{2}$+y2=1,即為軌跡E的方程.
∵點P、Q不重合,且它們不與A1、A2重合,
∴x≠±$\sqrt{2}$,軌跡E的方程為$\frac{{x}^{2}}{2}$+y2=1(x≠±$\sqrt{2}$);
(2)設B(x1,y1),D(x2,y2),則A(-x1,-y1),則
B,D代入$\frac{{x}^{2}}{2}$+y2=1,相減整理可得kAD•kBD=-$\frac{1}{2}$,
∵kAD=kAC=$\frac{{y}_{1}}{2{x}_{1}}$=$\frac{1}{2}$kAB
∴kAB•kBD=-1,
∴AB⊥BD.

點評 本題著重考查了雙曲線的標準方程、直線的基本量與基本形式和動點軌跡的求法,考查點差法的運用等知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知盒子中有4個紅球,n個白球,若從中一次取出4個球,其中白球的個數為X,且E(X)=$\frac{12}{7}$.則n的值(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的極坐標方程為:ρsinθ+ρcosθ=2,曲線C的極坐標方程為:ρcos2θ=asinθ(a>0),曲線C與直線l的交點為M,N.
(Ⅰ)當a=1時,求直線l和曲線C相交的弦長|MN|;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求△OMN的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(1,-1),則$\overrightarrow{a}$•(2$\overrightarrow{b}-\overrightarrow{a}$)=-24.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知a>0,函數f(x)=|$\frac{x-a}{x+2a}$|.
(1)求函數f(x)的零點;
(2)求不等式組$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$的解集;
(3)記f(x)在區間[0,4]上的最大值為g(a),求g(a)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2.
(Ⅰ)若$\overrightarrow{a}$與$\overrightarrow{b}$的夾角為$\frac{π}{3}$,求|$\overrightarrow{a}+2\overrightarrow{b}$|;
(Ⅱ)若(2$\overrightarrow{a}-b$)$•(3\overrightarrow{a}+\overrightarrow{b})$=3,求$\overrightarrow{a}$與$\overrightarrow{b}$的夾角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.某廠家擬在暑期舉行大型的促銷活動,經測算某產品當促銷費用為x萬元時,銷售量t萬件滿足t=5-$\frac{2}{x}$(其中0≤x≤a,a為正常數)現擬定生產量與銷售量相等,已知生產該產品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產品的銷售價格定為(4+$\frac{20}{t}$)萬元/萬件.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知橢圓C的中心在原點,離心率為$\frac{1}{2}$,且與拋物線y2=4x有共同的焦點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx+m與橢圓C相切于N點,且與直線x=4交于M點,試探究,在坐標平面內是否存在點P,使得以MN為直徑的圓恒過點P?

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列函數中,最小正周期為π且圖象關于原點對稱的函數是(  )
A.y=sin2x+cos2xB.y=sinx+cosxC.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美二区 | 国产电影一区二区三区图片 | 黄色一级片在线看 | 国产精品视频免费观看 | 日本精品一区二区在线观看 | 欧美日韩精品一区二区 | 欧美亚洲国产一区 | 天堂视频中文字幕 | 欧美第7页| 久久九九免费 | 日本不卡一区二区 | 性色av一区二区三区 | 精品永久 | 亚洲精品国产第一综合99久久 | 在线观看一区二区视频 | 久久精品欧美一区二区三区不卡 | 成人久久久精品国产乱码一区二区 | 粉嫩高清一区二区三区 | 一区二区三区观看视频 | 欧美日韩三级在线 | 日韩高清在线 | av一区在线观看 | 青草视频在线 | 成人av影视在线观看 | 一区二区三区在线观看免费 | 成年人在线看片 | www.色综合 | 狠狠躁夜夜躁人人爽天天高潮 | 狠狠躁夜夜躁人人爽天天高潮 | 久久青青| 国产精品久久久久国产a级 一区免费在线观看 | 特a级片 | 国产视频一区二区在线 | 成人欧美一区二区三区在线播放 | 欧美爱爱网 | 国产传媒在线视频 | 成人av免费在线 | 免费的黄色毛片 | 一级大片av | 久久精品亚洲 | 无套内谢孕妇毛片免费看红桃影视 |