日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
15.已知向量$\overrightarrow{BA}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),則∠ABC=(  )
A.30°B.45°C.60°D.90°

分析 由已知向量的坐標求出向量的模,再求出$\overrightarrow{BA}•\overrightarrow{BC}$,代入數量積求夾角公式得答案.

解答 解:∵$\overrightarrow{BA}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),
∴$|\overrightarrow{BA}|=\sqrt{(-\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=1$,$|\overrightarrow{BC}|=\sqrt{(\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=1$,
$\overrightarrow{BA}•\overrightarrow{BC}=-\frac{1}{2}×\frac{1}{2}+\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{1}{2}$,
則cos∠ABC=cos<$\overrightarrow{BA},\overrightarrow{BC}$>=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{\frac{1}{2}}{1×1}=\frac{1}{2}$,
則∠ABC=60°.
故選:C.

點評 本題考查平面向量的數量積運算,考查由數量積求向量的夾角,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{2\sqrt{3}}}{3}$,過右焦點F的直線與兩條漸近線分別交于點A、B且與其中一條漸近線垂直,若△OAB的面積為2$\sqrt{3}$,其中O為坐標原點,則雙曲線的焦距為(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$2\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.如圖,側棱垂直于底面的三棱柱ABC-A1B1C1的各棱長均為2,其正視圖如圖所示,則此三棱柱側視圖的面積為(  )
A.2B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.在△ABC中,內角A,B,C的對邊分別是a,b,c,且cosA=$\frac{{\sqrt{6}}}{3}$.
(1)求tan2A;
(2)若cosB=$\frac{{2\sqrt{2}}}{3},c=2\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=-2,則 cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.如圖,角α的始邊與x軸的非負半軸重合,終邊與單位圓交于點A(x1,y1),角β=α+$\frac{2π}{3}$的終邊與單位圓交于點B(x2,y2),記f(α)=y1-y2.若角α為銳角,則f(α)的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.$\underset{lim}{n→∞}$$\frac{(n+5)(1-3n)}{(2n+1)^{2}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.運行如圖所示框圖的相應程序,若輸入a,b的值分別為0.25和4,則輸出M的值是(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.設F1,F為橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1,(a1>b1>0)與雙曲線C2的公共左、右焦點,它們在第一象限內交于點M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2,若橢圓C1的離心率e∈[$\frac{3}{8}$,$\frac{4}{9}$],則雙曲線C2的離心率的取值范圍是(  )
A.[$\frac{5}{4}$,$\frac{5}{3}$]B.[$\frac{3}{2}$,++∞)C.(1,4]D.[$\frac{3}{2}$,4]

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本免费中文字幕 | 久久久国产一区二区三区 | 一区二区精品视频在线观看 | 91麻豆产精品久久久久久 | 九九久久久 | 日韩三级在线电影 | 欧美成在线观看 | 四虎国产精品成人免费影视 | 精品伦精品一区二区三区视频 | 久久久www| 日韩另类视频 | 欧美在线激情 | 激情视频网站 | 亚洲国产精品一区二区第一页 | 91麻豆精品国产91久久久更新资源速度超快 | 精品综合久久久 | 在线日韩欧美 | 亚洲精品一区二区 | 99国产精品久久久 | 国产精品久久一区 | 日韩久久久久久 | 在线播放国产一区二区三区 | 久久蜜桃 | 国产无套一区二区三区久久 | 日韩 国产 在线 | 操到爽| 精品一区二区三区三区 | 中文字幕在线观 | 精品九九九 | 久久久久久国产精品 | 美女一级毛片 | 91色在线| 在线免费毛片 | 国产一区二区精品在线观看 | 久久久久亚洲精品国产 | 中文字幕电影在线 | 亚洲成av | av解说在线精品 | 日本理论片好看理论片 | 国产成人综合网 | 欧美成人在线免费观看 |