日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.過三棱柱ABC-A1B1C1的任意兩條棱的中點作直線,其中有6條與平面ABB1A1平行.

分析 作出圖象,由圖形知只有過H,G,F,I四點的直線才會與平面ABB1A1平行,由計數原理得出直線的條數即可

解答 解:作出如圖的圖形,H,G,F,I是相應直線的中點,
故符合條件的直線只能出現在平面HGFI中,
由此四點可以組成C42=6條直線.
故答案為:6.

點評 本題考查滿足條件的直線的條數的求法,是基礎題,解題時要認真審題,注意空間思維能力的培養.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.設函數f(x)=|$\frac{4}{x}$-ax|,若對任意的正實數a,總存在x0∈[1,4],使得f(x0)≥m,則實數m的取值范圍為(  )
A.(-∞,0]B.(-∞,1]C.(-∞,2]D.(-∞,3]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的離心率為$\frac{\sqrt{5}}{2}$,P是該雙曲線上的點,P在該雙曲線兩漸近線上的射影分別是A、B,則|PA|•|PB|的值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.觀察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此規律,當n∈N*時,
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=(  )
A.4nB.4n-1C.42n-1D.42n

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.當n為正奇數時,$C_7^0{7^n}+C_n^1{7^{n-1}}+C_n^2{7^{n-2}}+…+C_n^{n-1}7$除以9的余數是7.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知正三棱錐P-ABC的各棱長都為2,底面為ABC,棱PC的中點為M,從A點出發,在三棱錐P-ABC的表面運動,經過棱PB到達點M的最短路徑之長為$\sqrt{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.求下列函數的最大值與最小值
(1)y=2sinx-3,x∈R
(2)y=$\frac{7}{4}$+sinx-sin2x,x∈R.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若集合M⊆N,則以下集合中一定是空集的是(  )
A.M∩NB.M∩∁UNC.UM∩ND.M∪N

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側面ACC1A1與側面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2$\sqrt{3}$.
(1)求證:AB1⊥CC1
(2)若AB1=3$\sqrt{2}$,A1C1的中點為D1,求二面角C-AB1-D1的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区国产亚洲网站 | 国产精品美女视频网站 | 最近免费中文字幕大全免费版视频 | 欧美日韩成人在线视频 | 在线三级av | 999久久久免费精品国产 | 中文字幕亚洲欧美日韩在线不卡 | 欧美日韩91| 天天操天天曰 | 亚洲精品综合中文字幕 | 精品国产一区二区三区四区 | 蜜桃av中文字幕 | 狠狠操综合网 | www久久99 | 欧美性www| 日韩在线精品视频 | 在线视频三区 | 久久免费看 | 国产aaa一级毛片 | 国产一区免费在线 | 99亚洲精品 | 国产欧美一区二区精品性色 | 国产精品久久久久久久久免费软件 | 色性网 | 久草免费在线色站 | 国产欧美精品区一区二区三区 | 日本高清精品 | 一级黄色大片在线 | 中文字幕亚洲欧美日韩在线不卡 | 亚洲日韩aⅴ在线视频 | 国产九九精品 | 偷拍亚洲色图 | 国产91免费在线 | 人人射人人插 | 五月婷婷天 | 精品九九 | 男女羞羞羞视频午夜视频 | 精品视频在线观看 | 成人精品久久久 | 青青草视频网 | 久久一日本道色综合久久 |