分析 由已知得a3,a7是方程x2-20x+64=0的兩個根,且a3<a7,從而求出a3=4,a7=16,再由等比數(shù)列通項公式列方程組求出首項和公比,由此能求出a11.
解答 解:∵單調遞增的等比數(shù)列{an}中,
a1•a9=64,a3+a7=20,
∴a3•a7=a1•a9=64,
∴a3,a7是方程x2-20x+64=0的兩個根,且a3<a7,
解方程x2-20x+64=0,
得a3=4,a7=16,
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=4}\\{{a}_{1}{q}^{6}=16}\end{array}\right.$,解得${a}_{1}=2,q=\sqrt{2}$,
∴a11=a1q10=2×($\sqrt{2}$)10=64.
故答案為:64.
點評 本題考查等比數(shù)列的第11項的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,2) | D. | (0,2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {5} | B. | {0,3} | C. | {0,2,3,5} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1125$\sqrt{2}$π | B. | 3375$\sqrt{2}$π | C. | 450π | D. | 900π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | β內必存在直線與m平行,存在直線與m垂直 | |
B. | β內必不存在直線與m平行,必存在直線與m垂直 | |
C. | β內必不存在直線與m平行,且不存在直線與m垂直 | |
D. | β內必存在直線與m平行,不存在直線與m垂直 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com