A. | (-∞,2)∪(1,+∞) | B. | (-2,1) | C. | (-∞,-1)∪(2,+∞) | D. | (-1,2) |
分析 構造新函數g(x)=$\frac{f(x)}{x}$,通過求導得到g(x)的單調性,所解的不等式轉化為求g(x2+x)>g(2),結合函數的單調性得到不等式,求解得答案.
解答 解:設g(x)=$\frac{f(x)}{{e}^{x}}$,(x>0),
∵f(x)<f'(x),∴g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
∴g(x)在(0,+∞)單調遞增,
由${e^{-x}}f({{x^2}+x})>{e^{{x^2}-2}}$f(2),得$\frac{f({x}^{2}+x)}{{e}^{{x}^{2}+x}}>\frac{f(2)}{{e}^{2}}$,即g(x2+x)>g(2),
∴x2+x>2,
解得:x<-2或x>1.
∴不等式${e^{-x}}f({{x^2}+x})>{e^{{x^2}-2}}$f(2)的解集是(-∞,-2)∪(1,+∞).
故選:A.
點評 本題考查了函數的單調性問題,考查導數的應用,構造新函數g(x)是解題的關鍵,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com