A. | (-∞,0) | B. | (-∞,-3] | C. | [-3,0) | D. | (-3,0) |
分析 當a<0時,f′(x)=1-$\frac{a}{x}$>0恒成立,函數f(x)在(0,+∞)上是增函數,函數y=$\frac{1}{x}$在(0,1]上是減函數,推導出f(x2)+4×$\frac{1}{{x}_{2}}$≤f(x1)+4×$\frac{1}{{x}_{1}}$,設h(x)=f(x)+$\frac{4}{x}$=x-1-alnx+$\frac{4}{x}$,則|f(x2)-f(x2)|≤4|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,等價于函數h(x)在區間(0,1]上是減函數,由此利用導數性質能求出結果.
解答 解:∵函數f(x)=x-1-alnx(a<0)對任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,
∴當a<0時,f′(x)=1-$\frac{a}{x}$>0恒成立,
此時,函數f(x)在(0,+∞)上是增函數,
又函數y=$\frac{1}{x}$在(0,1]上是減函數
不妨設0<x1≤x2≤1
則|f(x1)-f(x2)|=f(x2)-f(x1),
∴|f(x1)-f(x2)|≤4|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,|,
即f(x2)+4×$\frac{1}{{x}_{2}}$≤f(x1)+4×$\frac{1}{{x}_{1}}$,
設h(x)=f(x)+$\frac{4}{x}$=x-1-alnx+$\frac{4}{x}$,
則|f(x1)-f(x2)|≤4|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,等價于函數h(x)在區間(0,1]上是減函數
∵h'(x)=1-$\frac{a}{x}$-$\frac{4}{{x}^{2}}$=$\frac{{x}^{2}-ax-4}{{x}^{2}}$,∴x2-ax-4≤0在(0,1]上恒成立,
即a≥x-$\frac{4}{x}$在(0,1]上恒成立,即a不小于y=x-$\frac{4}{x}$在(0,1]內的最大值.
而函數y=x-$\frac{4}{x}$在(0,1]是增函數,
∴y=x-$\frac{4}{x}$的最大值為-3
∴a≥-3,
又a<0,∴a∈[-3,0).
故選:C.
點評 本題考查實數值取值范圍的求法,是中檔題,解題時要認真審題,注意構造法和導數性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $[{-1,\frac{1}{2}})$ | B. | $({-1,\frac{1}{2}})$ | C. | (-∞,-1] | D. | $({-∞,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com