日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函數f(x)的單調區間;
(II)若A,B是函數f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數m的取值范圍。

(Ⅰ)
上單調遞增,在上單調遞減.
(Ⅱ) .

解析試題分析:(Ⅰ)f(x)的定義域為…………2分

時,>0, 上單調遞增;
時,<0, 上單調遞減.
綜上所述:
上單調遞增,在上單調遞減.
……………5分
(Ⅱ) 依題意,設,不妨設
恒成立,…………6分
,則恒成立,
所以恒成立,
……………8分
則g(x)在為增函數,
所以,對恒成立,…………10分
所以,對恒成立,
,對恒成立,
因此.……………12分
考點:本題主要考查應用導數研究函數的單調性及極值,二次函數的圖象和性質。
點評:典型題,本題屬于導數應用中的基本問題,(2)涉及恒成立問題,轉化成求函數的最值,這種思路是一般解法,往往要利用“分離參數法”,本題最終化為二次函數最值問題,體現考題“起點高,落點低”的特點。涉及對數函數,要特別注意函數的定義域。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數(其中),且函數的圖象在     點處的切線與函數的圖象在點處的切線重合.
(Ⅰ)求實數a,b的值;
(Ⅱ)若,滿足,求實數m的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線過點P(1,3),且在點P處的切線
恰好與直線垂直.求 (Ⅰ) 常數的值; (Ⅱ)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
,點P(,0)是函數的圖象的一個公共點,兩函數的圖象在點P處有相同的切線.
(1)用表示a,b,c;
(2)若函數在(-1,3)上單調遞減,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數的零點的集合為{0,1},且是f(x)的一個極值點。
(1)求的值;
(2)試討論過點P(m,0)與曲線y=f(x)相切的直線的條數。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在區間[0,1]上是增函數,在區間上是減函數,又
(Ⅰ)求的解析式;
(Ⅱ)若在區間(m>0)上恒有成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數(其中e為自然對數)
(1)求F(x)="h" (x)的極值。
(2)設 (常數a>0),當x>1時,求函數G(x)的單調區間,并在極值存在處求極值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
已知函數f(x)=lnx+
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)設mR,對任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實數m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分) 已知函數
(1)當時,求曲線在點處的切線方程;
(2)當時,判斷方程實根個數.
(3)若時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩午夜精品 | 久久激情国产 | 国产精品久久久精品 | 国产精品久久久久久福利 | 国产精品久久久久毛片软件 | 日本一区二区免费在线 | 日韩视频中文 | 婷婷网址 | 91精品国产91久久久久久蜜臀 | 国产精自产拍久久久久久 | 成人av视| 免费观看黄a一级视频 | 国产精品99久久久久久动医院 | 91精品国产综合久久精品 | 欧美麻豆 | 激情91 | 国产99久久精品 | 日韩爽妇网 | 91高清视频在线观看 | 99精品久久久久久蜜桃 | 在线播放91 | 欧美一级乱黄 | 波多野结衣一区二区三区高清 | 中文字幕第一页久久 | 精品国产一区二区三区久久久蜜月 | 亚洲国产精品成人综合色在线婷婷 | 成人福利在线 | 免费黄色毛片视频 | www.日韩在线 | 日韩一区二区在线免费观看 | 国产精品久久久久国产a级 色999国产 | 午夜视频网站 | 日韩一区二区三区免费视频 | 成人亚洲 | 亚洲成人一区二区三区 | 永久精品| 狠狠久久综合 | 中文字幕 国产 | 在线免费观看色视频 | 五月激情六月婷婷 | www亚洲免费国内精品 |