日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.曲線$y=\frac{{{x^2}+4}}{x}$的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為(  )
A.$8\sqrt{2}π$B.$8(3-\sqrt{2})π$C.$16(\sqrt{2}-1)π$D.$16(2-\sqrt{2})π$

分析 設直線l與曲線的切點坐標為(x0,y0),求出函數的導數,可得切線的斜率和方程,聯立直線y=x求得A的坐標,與y軸的交點B的坐標,運用兩點距離公式和基本不等式可得AB的最小值,再由正弦定理可得外接圓的半徑,進而得到所求面積的最小值.

解答 解:設直線l與曲線的切點坐標為(x0,y0),
函數$y=\frac{{{x^2}+4}}{x}$的導數為$y'=\frac{{{x^2}-4}}{x^2}$.
則直線l方程為$y-\frac{x_0^2+4}{x_0}=\frac{x_0^2-4}{x_0^2}({x-{x_0}})$,即$y=\frac{x_0^2-4}{x_0^2}x+\frac{8}{x_0}$,
可求直線l與y=x的交點為A(2x0,2x0),與y軸的交點為$B({0,\frac{8}{x_0}})$,
在△OAB中,${|{AB}|^2}=4x_0^2+{({2{x_0}-\frac{8}{x_0}})^2}=8x_0^2+\frac{64}{x_0^2}-32≥32({\sqrt{2}-1})$,
當且僅當x02=2$\sqrt{2}$時取等號.
由正弦定理可得△OAB得外接圓半徑為$r=\frac{1}{2}\frac{{|{AB}|}}{{sin{{45}°}}}=\frac{{\sqrt{2}}}{2}|{AB}|$,
則△OAB外接圓面積$S=π{r^2}=\frac{1}{2}π{|{AB}|^2}≥16({\sqrt{2}-1})π$,
故選C.

點評 本題考查導數的運用:求切線方程,考查導數的幾何意義,同時考查正弦定理的運用,基本不等式的運用:求最值,以及化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

1.口袋中有若干紅球、黃球和藍球,從中摸出一只球.摸出紅球的概率為0.48,摸出黃球的概率為0.35,則摸出藍球的概率為0.17.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.函數f(x)=(3-x2)•ln|x|的大致圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,在三棱錐A-BCD中,△ABD為邊長等于$\sqrt{2}$正三角形,CD=CB=1.△ADC與△ABC是有公共斜邊AC的全等的直角三角形.
(Ⅰ)求證:AC⊥BD;
(Ⅱ)求D點到平面ABC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.如果定義在R上的函數f(x)滿足:對于任意x1≠x2,都有x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1),則稱f(x)為“H函數”.給出下列函數:
①y=-x3+x+l;
②y=3x-2(sinx-cosx);
③y=l-ex;
④f(x)=$\left\{\begin{array}{l}{lnx(x≥1)}\\{0(x<1)}\end{array}\right.$,
其中“H函數”的個數有(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=2ln(x+1)+$\frac{1}{2}m{x^2}$-(m+1)x有且只有一個極值.
(Ⅰ)求實數m的取值范圍;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知$f(x)=\frac{lnx}{x}$,則(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.要測量電視塔AB的高度,在C點測得塔頂的仰角是45°,在D點測得塔頂的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度是(  )
A.30mB.40mC.$40\sqrt{3}$mD.$40\sqrt{2}$m

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.若定義在R上的函數f(x)滿足f(x)+f'(x)<1且f(0)=3,則不等式$f(x)>\frac{2}{e^x}+1$(其中e為自然對數的底數)的解集為(-∞,0).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲一区二区久久 | av网在线观看 | 成人三级晚上看 | 日韩a在线 | 欧美三级 欧美一级 | 黄色片观看 | 一级肉体全黄裸片 | 欧美日韩精品一区 | 国产黄a三级三级三级看三级男男 | 亚洲午夜一区 | 日本不卡免费 | 日韩国产中文字幕 | 在线不卡视频 | 波多野结衣乳巨码无在线观看 | 黄色成人在线观看 | 91福利网站 | 性网址 | 午夜影院在线 | 国产一区二区观看 | 欧美黄色网 | 一区二区三区四区在线播放 | 一区二区不卡视频 | 精品国产三级 | 国产精品一区二区av | 亚洲一区二区三区在线 | 久久国产精品视频 | 日韩欧美在线一区 | 久久精品99久久久久久 | 日韩三级精品 | 日韩欧美视频一区 | 黄色裸体视频 | 亚洲天堂av网 | 亚洲免费精品 | 久久精品欧美一区 | 国产在线a| 天天澡天天狠天天天做 | 91av视频在线观看 | 日本三级中文字幕 | 日韩亚洲一区二区 | 午夜精品影院 | 国产h视频在线观看 |