分析 (1)設等差數列{an}的公差為d,等比數列{bn}的公比為q.$\frac{{b}_{6}}{{b}_{7}}$=$\frac{1}{2}$,可得q=2,bn.根據10a1•b2=-1,2a1•b2+5a2•b3=-2,可得10a1•$(-\frac{1}{100})$×2=-1,$2×(-\frac{1}{10})$+5(a1+d)×$(-\frac{1}{100}×{2}^{2})$=-2,解出即可得出.
(2)$\frac{1}{{b}_{n}}$=$-\frac{100}{{2}^{n-1}}$,利用等差數列與等比數列的求和公式即可得出.
(3)由(2)可得S1>S2>S3<S4<S5<S6<…,即可得出.
解答 解:(1)設等差數列{an}的公差為d,等比數列{bn}的公比為q.
∵$\frac{{b}_{6}}{{b}_{7}}$=$\frac{1}{2}$,∴q=2,∴${b}_{n}=-\frac{1}{100}×{2}^{n-1}$.
∵10a1•b2=-1,2a1•b2+5a2•b3=-2,
∴10a1•$(-\frac{1}{100})$×2=-1,$2×(-\frac{1}{10})$+5(a1+d)×$(-\frac{1}{100}×{2}^{2})$=-2,
解得a1=5,d=4,
∴an=5+4(n-1)=4n+1,${b}_{n}=-\frac{1}{100}×{2}^{n-1}$.
(2)$\frac{1}{{b}_{n}}$=$-\frac{100}{{2}^{n-1}}$,
數列{an+$\frac{1}{{b}_{n}}$}的前n項和Sn=-100×$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$+$\frac{n(5+4n+1)}{2}$=$\frac{200}{{2}^{n}}$+2n2+3n-200.
(3)由(2)可得:S1>S2>S3<S4<S5<S6<…,
∴Sn的最小值為S3=-148.
點評 本題考查了數列遞推關系、等差數列與等比數列的通項公式與求和公式、數列的單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | -3 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=$\frac{2}{x}$ | B. | y=2x | C. | y=2x | D. | y=x2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | 56 | C. | 256 | D. | 306 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com