分析 (1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可;
(2)求出函數的導數,根據3是函數y=f(x)的極值點,得到關于a的方程,解出a,求出f(x)的解析式,從而求出切線方程即可.
解答 解:(1)a=4時,f(x)=2x3-15x2+24x,
f′(x)=6x2-30x+24=6(x2-5x+4)(x-4)(x-1),
令f′(x)>0,解得:x>1或x<4,
令f′(x)<0,解得:1<x<4,
故f(x)在(-∞,1)遞增,在(1,4)遞減,在(4,+∞)遞增;
(2)∵f(x)=2x3-3(a+1)x2+6ax,
∴f′(x)=6x2-6(a+1)x+6a,
∵3是函數y=f(x)的極值點,
∴f′(3)=0,即6×32-6(a+1)×3+6a=0,
解得:a=3,
∴f(x)=2x3-12x2+18x,
f′(x)=6x2-24x+18,
則f(0)=0,f′(0)=18,
∴y=f(x)在(0,f(0))處的切線方程是:y=18x;
點評 本題考查了函數的單調性、最值問題,考查導數的意義以及分類討論思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | an=$\sqrt{4n+1}$ | B. | an=$\sqrt{4n-1}$ | C. | an=$\sqrt{2n+1}$ | D. | an=$\sqrt{2n+3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com