分析 利用分離常數法轉化成三角函數,利用定義域范圍求函數的值域.
解答 解:函數f(x)=$\frac{3cosx+1}{2-cosx}$=$\frac{-3(2-cosx)+7}{2-cosx}$=-3+$\frac{7}{2-cosx}$
∵$-\frac{π}{3}<x<\frac{π}{3}$,
∴$\frac{1}{2}$<cosx≤1,
∴-1≤-cosx$<-\frac{1}{2}$
故得f(x)∈$(\frac{5}{3},4]$,
故答案為:$(\frac{5}{3},4]$.
點評 本題考查了函數值域的求法.高中函數值域求法有:1、觀察法,2、配方法,3、反函數法,4、判別式法;5、換元法,6、數形結合法,7、不等式法,8、分離常數法,9、單調性法,10、利用導數求函數的值域,11、最值法,12、構造法,13、比例法.要根據題意選擇.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(2)<f(-2)<f(0) | B. | f(0)<f(2)<f(-2) | C. | f(-2)<f(0)<f(2) | D. | f(-)<f(-2)<f(2) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com