分析 由題意利用同角三角函數的基本關系求得 2sinαcosβ=cosαsinβ,再根據cosαsinβ=$\frac{2}{3}$,求得 sinαcosβ的值,利用兩角差的正弦公式求得sin(α-β)的值.
解答 解:∵tanβ=2tanα,即$\frac{sinβ}{cosβ}$=2$\frac{sinα}{cosα}$,
∴2sinαcosβ=cosαsinβ.
∵cosαsinβ=$\frac{2}{3}$,∴sinαcosβ=$\frac{1}{3}$,則sin(α-β)=sinαcosβ-cosαsinβ=$\frac{1}{3}$-$\frac{2}{3}$=-$\frac{1}{3}$,
故答案為:$-\frac{1}{3}$.
點評 本題主要考查同角三角函數的基本關系,兩角差的正弦公式的應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 導函數為$f'(x)=-3sin(2x-\frac{π}{3})$ | |
B. | 函數f(x)的圖象關于直線$x=\frac{2π}{3}$對稱 | |
C. | 函數f(x)在區間(-$\frac{π}{12}$,$\frac{5π}{12}$)上是增函數 | |
D. | 函數f(x)的圖象可由函數y=3co s2x的圖象向右平移$\frac{π}{3}$個單位長度得到 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com