日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

20.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,3),則$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$-$\overrightarrow{b}$方向上的投影為6$\sqrt{2}$.

分析 根據(jù)向量的坐標(biāo)運(yùn)算和向量投影的定義即可求出

解答 解:∵向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,3),
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(5,7),$\overrightarrow{a}$-$\overrightarrow{b}$=(1,1),
∴($\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-$\overrightarrow{b}$)=57=12,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$,
∴$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$-$\overrightarrow{b}$方向上的投影為$\frac{(\overrightarrow{a}+\overrightarrow{b})(\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{12}{\sqrt{2}}$=6$\sqrt{2}$,
故答案為:6$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量投影的定義,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.《九章算術(shù)》是東方數(shù)學(xué)思想之源,在卷五《商功》中有以下問題:今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?譯文:如圖所示的幾何體是三個(gè)側(cè)面皆為等腰梯形,其他兩面為直角三角形的五面體,(前端)下寬6尺,上寬一丈,深3尺,末端寬8尺,無深,長7尺,則它的體積是84立方尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD⊥底面ABCD,PA⊥PC;
(1)求證:平面PAB⊥平面PCD;
(2)若過點(diǎn)B的直線l垂直平面PCD,求證:l∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}(x-y)(x+y)≥0\\-1≤x≤1\end{array}\right.$內(nèi)的任意一點(diǎn),A(2,1),則$\overrightarrow{OA}•\overrightarrow{OP}$的最大值,最小值分別為(  )
A.3,-3B.1,-3C.1,-1D.3,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xoy中,一動(dòng)圓經(jīng)過點(diǎn)($\frac{1}{2}$,0)且與直線x=-$\frac{1}{2}$相切,設(shè)該動(dòng)圓圓心的軌跡方程為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)設(shè)P是曲線E上的動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為x0,點(diǎn)B,C在y軸上,△PBC的內(nèi)切圓的方程為(x-1)2+y2=1,將|BC|表示成x0的函數(shù),并求△PBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:x2=2py(p>0),直線l:y=-2,且拋物線的焦點(diǎn)到直線l的距離為3.
(Ⅰ)求拋物線的方程;
(Ⅱ)動(dòng)點(diǎn)P在直線l上,過P點(diǎn)作拋物線的切線,切點(diǎn)分別為A,B,線段AB的中點(diǎn)為Q,證明:PQ⊥x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Tn.(  )
A.若q>1,則數(shù)列{Tn}單調(diào)遞增B.若數(shù)列{Tn}單調(diào)遞增,則q>1
C.若Tn>0,則數(shù)列{Tn}單調(diào)遞增D.若數(shù)列{Tn}單調(diào)遞增,則Tn>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex(sinx+cosx).
(1)如果對(duì)于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求實(shí)數(shù)k的取值范圍;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],過點(diǎn)M($\frac{π-1}{2}$,0)作函數(shù)f(x)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某電商在6月18日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:
 顧客年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 頻數(shù) 4 24 32 20 16 4
(1)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖,求這100名顧客年齡的平均數(shù);
(3)用分層抽樣的方法從這100名顧客中抽取25人,再從抽取的25人中隨機(jī)抽取2人,求年齡在[25,35)內(nèi)的顧客人數(shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 九一免费国产 | 久久国产精品精品 | 国产精品视频播放 | 五月婷婷激情 | 美女视频一区 | 久久成人免费视频 | 国产精品精品视频一区二区三区 | 亚洲日本aⅴ片在线观看香蕉 | 久久一区二区三区四区五区 | 伦乱视频| 夜本色| 成人精品一区二区三区中文字幕 | 久草在线 | 欧美自拍视频 | 日韩国产高清在线 | 国产视频网| 国产一级片在线播放 | 精品久久久久久久久久久 | 欧美日韩精品 | 超碰人人干人人 | 国产精品不卡一区 | 久久女人网| 国产视频网 | 美女午夜视频 | 精品久 | 国产成人aaa| 日本在线观看视频一区 | 日本天天操 | 日韩av一二三四区 | 91污视频 | 精品国产乱码久久久久久蜜柚 | 久久伊人免费视频 | 色综合99| 亚洲四区 | 美日韩精品视频 | 99久久久国产精品 | 免费的黄色毛片 | 国产精品永久免费视频 | 欧美日韩亚洲国产 | 欧美日韩一区在线 | 精品国产天堂 |