分析 結合二次函數的圖象和性質,分類討論函數的單調性,可得答案.
解答 解:當x≤0時,函數f(x)=-x2+|x|=-x2-x,
由y=-x2-x的圖象開口朝下,且以直線x=-$\frac{1}{2}$為對稱軸,
則此時函數的遞減區間是[-$\frac{1}{2}$,0];
當x>0時,函數f(x)=-x2+|x|=-x2+x,
由y=-x2+x的圖象開口朝下,且以直線x=$\frac{1}{2}$為對稱軸,
則此時函數的遞減區間是[$\frac{1}{2}$,+∞),
綜上所述,函數f(x)=-x2+|x|的遞減區間是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞),
故答案為:[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞)
點評 本題考查的知識點是分段函數的應用,二次函數的圖象和性質,函數的單調性,難度中檔.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{5+2\sqrt{6}}}{2}$ | B. | $5+2\sqrt{6}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{3\sqrt{13}}{26}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a與|a|是集合A中的兩個不同元素 | |
B. | 方程(x-1)2(x-2)=0的解集有3個元素 | |
C. | 拋物線y=x2上的所有點組成的集合是有限集 | |
D. | 不等式x2+1≤0的解集是空集 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com