A. | 7 | B. | 8 | C. | 9 | D. | 不存在 |
分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,代入目標函數可得a+b=1,再由基本不等式求得$\frac{1}{a}$+$\frac{4}{b}$的最小值.
解答 解:由約束條件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$作出可行域如圖,
聯立$\left\{\begin{array}{l}{x-y-1=0}\\{2x-y-3=0}\end{array}\right.$,解得A(2,1),
由圖可知,當目標函數z=ax+2by(a>0,b>0),過A時,z有最小值為2a+2b=2,
則a+b=1,
又a>0,b>0,
∴$\frac{1}{a}$+$\frac{4}{b}$=($\frac{1}{a}$+$\frac{4}{b}$)(a+b)=5+$\frac{b}{a}+\frac{4a}{b}$$≥5+2\sqrt{\frac{b}{a}•\frac{4a}{b}}=9$.
當且僅當b=2a,即a=$\frac{1}{3}$,b=$\frac{2}{3}$時上式等號成立.
故選:C.
點評 本題考查簡單的線性規劃,考查利用基本不等式求最值,體現了數形結合的解題思想方法,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | ①與②的假設都錯誤 | B. | ①與②的假設都正確 | ||
C. | ①的假設正確;②的假設錯誤 | D. | ①的假設錯誤;②的假設正確 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{2}})$ | B. | (-∞,-1) | C. | $({-\frac{1}{2},+∞})$ | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1或$±\sqrt{2}$ | B. | ±1 | C. | 1或$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 大于m | B. | 小于m | ||
C. | 等于m | D. | 與m的大小關系無法確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com