日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x+
a
x
(a<0),g(x)=2lnx+bx,且函數g(x)在x=1處的切線斜率為2.
(1)若對[1,+∞)內的一切實數x,不等式f(x)≥g(x)恒成立,求實數a的取值范圍;
(2)當a=-1時,求最大的正整數k,使得對[e,3]內的任意k個實數x1、x2、…xk都有f(x1)+f(x2)+…+f(xk)≤16g(xk)成立;
(3)求證:ln(2n+1)<
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*).
考點:利用導數研究曲線上某點切線方程,利用導數求閉區間上函數的最值
專題:計算題,證明題,導數的綜合應用,不等式的解法及應用
分析:(1)求出g(x)的導數,由導數的幾何意義,即可求得,b=0,若對[1,+∞)內的一切實數x,不等式f(x)≥g(x)恒成立,轉化為-a≤x2-2xlnx恒成立,利用導數即可求實數a的取值范圍;
(2)求出f(x)的導數,求得f(x)在[e,3]上的最大值,要對[e,3]內的任意k個實數x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,得到不等式(k-1)×
8
3
≤16×2,解得即可;
(3)由(1)知,當x>1時,lnx<
1
2
(x-
1
x
)成立.不妨令x=
2k+1
2k-1
,x∈N*,先證明
1
4
[ln(2k+1)-ln(2k-1)]<
k
4k2-1
,再代入累加,即可得出ln(2n+1)<
n
i=1
4i
4i2-1
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*),即可得證.
解答: 解:(1)g(x)=2lnx+bx的導數g′(x)=
2
x
+b,
由于函數g(x)在x=1處的切線斜率為2,
即有2+b=2,解得,b=0,即有g(x)=2lnx.
由f(x)≥g(x)整理,得
-a
x
≤x-2lnx,
由于x≥1,要使不等式f(x)≥g(x)恒成立,
必須-a≤x2-2xlnx恒成立.  
設h(x)=x2-2xlnx,h′(x)=2x-2lnx-2,
∵h″(x)=2-
2
x
,∴當x≥1時,h″(x)≥0,則h′(x)是增函數,
∴h′(x)≥h′(1)=0,h(x)是增函數,h(x)≥h(1)=0,-a≤1.
因此,實數a的取值范圍是-1≤a<0.
(2)當a=-1時,f(x)=x-
1
x

∵f′(x)=1+
1
x2

∴f(x)在[e,3](上是增函數,f(x)在[e,3]上的最大值為f(3)=
8
3

要對[e,3]內的任意k個實數x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk
成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,
∵當x1=x2=…=xk-1=3時,不等式左邊取得最大值,xk=e時不等式右邊取得最小值.
∴(k-1)×
8
3
≤16×2,解得k≤13.
因此,k的最大值為13.
(3)證明:由(1)知,當x>1時,lnx<
1
2
(x-
1
x
)成立.
不妨令x=
2k+1
2k-1
,x∈N*
∴ln
2k+1
2k-1
1
2
2k+1
2k-1
-
2k-1
2k+1
)=
4k
4k2-1

1
4
[ln(2k+1)-ln(2k-1)]<
k
4k2-1

1
4
(ln3-ln1)<
1
12-1
1
4
(ln5-ln3)<
2
22-1

…,
1
4
[ln(2n+1)-ln(2n-1)<
n
4n2-1

累加可得
1
4
ln(2n+1)<
n
i=1
i
4i2-1

即有ln(2n+1)<4
n
i=1
i
4i2-1
=
n
i=1
4i
4i2-1
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*).
則原不等式成立.
點評:本題主要考查不等式恒成立以及不等式的證明,利用參數分離法轉化為參數恒成立問題,利用導數的應用是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

解方程組:
3x+y-6=0
x2+y2-2y-4=0

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,圖1中以陰影部分(含邊界)的點為元素所組成的集合用描述法表示為{(x,y)|0≤x≤1,0≤y≤2},則圖2中以陰影部分(不含外邊界但包含坐標軸)的點為元素所組成的集合:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=3ax+1在(0,1)上存在x0,使得f(x0)=0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設⊙Cn:(x-an2+(y-n)2=5n2,且⊙Cn與⊙Cn-1內切,數列{an}是正項數列,且首項a1=1.
(1)求數列{an}的通項公式;
(2)記bn=
1
anan+1
,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定點A(1,2)在圓x2+y2+kx+2y+k2-15=0的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正三棱柱(底面是正三角形且側棱垂直底面的三棱柱)ABC-A1B1C1中,
D是BC的中點,2A1A=AB=a.
(Ⅰ)求證:AD⊥B1D;
(Ⅱ)求三棱錐C-AB1D的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
1-tanα
1+tanα
=2,則tan(α+
π
4
)的值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,若|
AB
+
AC
|=|
AB
-
AC
|,AB=2,AC=1,E,F為BC邊的三等分點,則
AE
AF
=(  )
A、
8
9
B、
10
9
C、
25
9
D、
26
9

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜免费时刻 | 精品九九九 | 天天操综合 | 亚洲成在线 | 欧美一区二区三区在线观看 | 婷婷激情综合网 | 五月天婷婷丁香 | 亚洲精品一二三区 | 日韩精品视频免费在线观看 | 一级片在线 | 欧美久久久久 | 三级在线播放 | 久热99| 午夜视频网 | 日韩伦理一区 | 一区二区三区久久久 | 国产三级黄色 | 在线观看日本 | 日韩精品网站 | 亚洲精品午夜精品 | 国产3p视频 | 天堂av影院| 国产精品99久久久久久久久 | 在线成人 | 天天操天天操天天 | 亚洲黄色免费 | 免费三级网站 | 亚洲精品字幕 | 欧洲一级片 | 久久精品 | 放几个免费的毛片出来看 | 久久久亚洲天堂 | 在线精品一区 | 日产精品久久久一区二区 | 福利在线看 | 手机在线免费看av | 久久久久国产精品夜夜夜夜夜 | 秋霞午夜鲁丝一区二区老狼 | 日韩五十路 | 国产又粗又黄又爽又硬的视频 | 欧美三级精品 |