日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ln(x-1)+
2a
x
(其中x>1,a≥0)

(1)求函數f(x)的單調區間;
(2)已知對任意的x∈(1,2)∪(2,+∞),不等式
1
x-2
[f(x)-a]>0
成立,求實數a的取值范圍.
考點:利用導數研究函數的單調性,導數在最大值、最小值問題中的應用
專題:計算題,分類討論,導數的綜合應用,不等式的解法及應用
分析:(1)求出函數的導數,對a討論,①當0≤a≤2,②當a>2時,求出導數為0的根,解不等式,即可得到單調區間;
(2)當x>1且x≠2時,不等式
1
x-2
[f(x)-a]>0
成立等價為1<x<2時,f(x)<a且x>2時,f(x)>a恒成立.分別討論當0≤a≤2時,當a>2時,函數的單調性和最值情況,即可得到a的范圍.
解答: 解:(1)f(x)的導數f′(x)=
1
x-1
-
2a
x2
=
x2-2ax+2a
x2(x-1)

令g(x)=x2-2ax+2a(a≥0,x>1),則△=4a2-8a=4a(a-2),對稱軸x=a,
①當0≤a≤2,g(x)≥0,即f′(x)≥0,f(x)在(1,+∞)上遞增;
②當a>2時,g(x)=0的兩根x1=a-
a2-2a
,x2=a+
a2-2a
,
由g(1)=1-2a+2a=1>0,a>2,則1<x1<x2,
當x∈(x1,x2),g(x)<0,f(x)遞減,
當x∈(1,x1)∪(x2,+∞),g(x)>0,f(x)遞增;
則有f(x)的增區間為(1,a-
a2-2a
),(a+
a2-2a
,+∞),
減區間為(a-
a2-2a
,a+
a2-2a
);
(2)當x>1且x≠2時,不等式
1
x-2
[f(x)-a]>0
成立
等價為1<x<2時,f(x)<a且x>2時,f(x)>a恒成立.
由(1)知,當0≤a≤2時,f(x)在(1,+∞)上遞增,
f(2)≥a且f(2)≤a,即有f(2)=a,
即有ln1+
2a
2
=a,成立,則0≤a≤2恒成立;
當a>2時,g(2)=4-4a+2a=4-2a<0,即1<x1<2<x2,
x1<x<2時,f(x)遞減,f(x)>f(2)=a;
則存在1<x<2,f(x)>a即1<x<2時,f(x)<a不恒成立,不滿足題意.
綜上,a的取值范圍是[0,2].
點評:本題考查函數的導數的運用:求單調區間,考查不等式的恒成立問題,注意轉化為求函數的最值問題,考查分類討論的思想方法,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出定義:若函數f(x)在D上可導,即f′(x)存在,且導函數f′(x)在D上也可導,則稱f(x)在D上存在二階導數,記f′′(x)=(f′(x))′,若f′′(x)<0在D上恒成立,則稱f(x)在D上為凸函數.以下四個函數(1)f(x)=sinx+cosx;(2)f(x)=lnx-2x;(3)f(x)=-x3+2x-1;(4)f(x)=-xe-x在(0,
π
2
)上不是凸函數的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=2sin(
π
6
-2x),x∈[-π,0]
的單調遞增區間為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設P(x,y)是圓(x-2)2+y2=1上任意一點,則(x-5)2+(y+4)2的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的各項均為正數,其前n項和為Sn,且an2+2an=4Sn
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)bn=
4
an2 
(n∈N°),Tn=b1+b2+…+bn,求證:Tn
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心為原點,以坐標軸為對稱軸,且經過(-
1
2
,
3
),(
2
2
2
)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A(0,1)的直線l交橢圓C于M、N兩點,若OM⊥ON,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C1的中心在坐標原點,焦點在x軸上,且經過點P(
2
,0)、Q(-1,-
2
2
)

(1)求橢圓C1的標準方程;
(2)如圖,以橢圓C1的長軸為直徑作圓C2,過直線x=-2上的動點T作圓C2的兩條切線,設切點分別為A、B,若直線AB與橢圓C1求交于不同的兩點C、D,求
|AB|
|CD|
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

城市內環高架能改善整個城市的交通狀況,在一般情況下,高架上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數.當高架上的車流密度達到188輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過28輛/千米時,車流速度為80千米/小時.研究表明:當28≤x≤188時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤188時,求車流速度v關于車流密度x的函數解析式;
(2)若車流速度v不低于50千米/小時,求車流密度x為多大時,車流量f(x)(單位時間內通過高架橋上某觀測點的車輛數,單位:輛/小時,車流量=車流密度×車流速度)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a1=2,an+1=
1+an
1-an
(n∈N*),則a1•a2•a3•…•a2008的值為
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文在线视频 | 欧美精品二区三区四区免费看视频 | 亚洲成人av一区二区 | 成年人的免费视频 | 国模一区二区 | 丰满女人裸体淫交 | 亚洲免费在线观看视频 | 日韩一二三 | 久久视频免费观看 | 久久久网 | 黄色一级录像 | 深夜视频在线观看 | 天天cao| 精品亚洲国产成人av制服丝袜 | 91亚色视频| wwwxxx欧美 | 国产小视频在线播放 | 毛片毛片毛片毛片毛片 | 国产盗摄一区二区 | 国产在线天堂 | 九九热这里只有 | 中文字幕一区二 | 激情视频网址 | 中文字幕综合 | 日本成人黄色 | 深夜视频在线观看 | 男女搞黄网站 | 午夜视频网 | 三级视频网站 | 欧美黄色一级 | 亚洲精品在线视频观看 | 香蕉成人网 | 91美女网站 | 亚洲激情一区二区 | 一区二区网站 | 亚洲国产福利 | 午夜视频在线 | 久久久久久中文字幕 | 不卡av在线播放 | 91亚洲国产成人精品性色 | 久久久久久国产 |