日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.下列結論正確的個數為(  )
①命題“?x∈R,x2≥0”的否定是“?x0∈R,${x_0}^2≤0$”;
②命題“若$m≤\frac{1}{2}$,則方程mx2+2x+2=0有實數根”的否命題為真命題;
③“x≠3”是“|x|≠3”成立的充分不必要條件;
④銳角△ABC中,一定有“cosB<sinA<tanA”.
A.0B.1C.2D.3

分析 ①,“≥0”的否定是“<”;
②,否命題為“若$m>\frac{1}{2}$,則方程mx2+2x+2=0無實數根”滿足△<0,為真命題;
③,“x≠3”是“|x|≠3”成立的必要不充分條件;
④,銳角△ABC中,$0<A<\frac{π}{2}$,則sinA<tanA;又$0<B<\frac{π}{2}$,$\frac{π}{2}<A+B<π$,所以$0<\frac{π}{2}-B<A<\frac{π}{2}$,則$sin({\frac{π}{2}-B})<sinA$,則cosB<sinA,所以cosB<sinA<tanA;

解答 解:對于①,命題“?x∈R,x2≥0”的否定是“?x0∈R,${x_0}^2<0$”,故錯;
對于②,命題“若$m≤\frac{1}{2}$,則方程mx2+2x+2=0有實數根”的否命題為“若$m>\frac{1}{2}$,則方程mx2+2x+2=0無實數根”,滿足△<0,為真命題,故正確;
對于③,“x≠3”是“|x|≠3”成立的必要不充分條件,故錯;
對于④,銳角△ABC中,$0<A<\frac{π}{2}$,則sinA<tanA;又$0<B<\frac{π}{2}$,$\frac{π}{2}<A+B<π$,所以$0<\frac{π}{2}-B<A<\frac{π}{2}$,則$sin({\frac{π}{2}-B})<sinA$,則cosB<sinA,所以cosB<sinA<tanA.故正確;
故選:C.

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,則$|{\overrightarrow{BD}}|$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下列一定是指數函數的是(  )
A.y=axB.y=xa(a>0且a≠1)C.$y={(\frac{1}{2})^x}$D.y=(a-2)ax

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在區間[-1,2]上的最小值;
(2)作出函數g(x)的圖象,并根據圖象寫出其單調減區間;
(3)若函數y=g(x)-log2m至少有三個零點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.有下列幾個命題:
①平面α內有無數個點到平面β的距離相等,則α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分別表示平面,a,b表示直線),則γ∥β;
③平面α內一個三角形三邊分別平行于平面β內的一個三角形的三條邊,則α∥β;
④平面α內的一個平行四邊形的兩邊與平面β內的一個平行四邊形的兩邊對應平行,則α∥β.
其中正確的有③.(填序號)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.直線y=kx+1-k與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置關系為(  )
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M、N分別是AF、BC的中點,
(1)求證:MN∥平面CDEF;
(2)求平面MNF與平面CDEF所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.點P是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一點,F1和F2是焦點,且$∠{F_1}P{F_2}={60^0}$,則△F1PF2的周長為6,△F1PF2的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最優解不唯一,則a(  )
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜免费小视频 | 亚洲成人a v | aa一级片| 婷婷狠狠 | 亚洲精品久久久久 | 中文字幕中文字幕 | 快播少女爱欢乐 | 福利色导航| 国产精品一区二区视频 | 日韩三级一区 | www久久久| 黄色网页免费 | 1024日韩 | 欧美综合网 | www.亚洲视频 | 国产成人精品一区二 | 欧美一区二区三 | 国产精品成人在线 | 欧美视频一区二区三区 | 日日舔 | 亚洲精品国产精品国自产观看 | 日韩一二区 | 天天夜夜操 | 黄色成人小视频 | 国产一区福利 | 亚洲天堂色图 | 国产精品免费在线 | 中文字幕不卡在线 | 日韩在线毛片 | 日韩中文字幕在线 | 国产精品久久久久久久久久久久久久 | 免费不卡视频 | 一本色道久久综合亚洲精品酒店 | 午夜激情影视 | 国产中文 | 青青草免费在线观看 | 日韩精品国产一区 | 九九视频在线免费观看 | 中文字幕三区 | www.亚洲视频 | 日韩精品网站 |