日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.函數$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點之和為(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

分析 函數$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點?函數g(x)=cos(2x-$\frac{2π}{3}$)+4cos2x-2與h(x)=$\frac{3}{3x-π}$的交點橫坐標.
可得函數g(x),h(x)的圖象關于點($\frac{π}{3},0$)對稱,畫出函數g(x),h(x)的圖象,結合圖象可求解.

解答 解:函數$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點?函數g(x)=cos(2x-$\frac{2π}{3}$)+4cos2x-2與h(x)=$\frac{3}{3x-π}$的交點的橫坐標.
g(x)=cos(2x-$\frac{2π}{3}$)+4cos2x-2=$\frac{\sqrt{3}}{2}sin2x$+$\frac{3}{2}cos2x$=$\sqrt{3}$sin(2x+$\frac{π}{3}$),h(x)=$\frac{3}{3x-π}$=$\frac{1}{x-\frac{π}{3}}$,
可得函數g(x),h(x)的圖象,關于點($\frac{π}{3},0$)對稱.
函數g(x),h(x)的圖象如下:(只需畫出直線x=$\frac{π}{3}$右側部分)
結合圖象可得在區間[-$\frac{11π}{12}$,$\frac{19π}{12}$],函數g(x),h(x)的圖象由4個交點,關于點($\frac{π}{3},0$)對稱.
所有零點之和為2×$\frac{π}{3}$+2×$\frac{π}{3}$=$\frac{4π}{3}$,
故選:B

點評 本題考查了函數的圖象與性質,考查了數形結合思想、轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

11.已知p:x≥k,q:(x-1)(x+2)>0,若p是q的充分不必要條件,則實數k的取值范圍是(  )
A.(-∞,-2)B.[-2,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知ω為正整數,若函數f(x)=sinωx+cosωx在區間(-$\frac{π}{3}$,$\frac{π}{6}$)內單調遞增,則函數f(x)最小正周期為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),則tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知各項不為零的數列{an}的前n項和為Sn,且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1,a2,a3成等比數列,求實數p的值;
(2)若a1,a2,a3成等差數列,
①求數列{an}的通項公式;
②在an與an+1間插入n個正數,共同組成公比為qn的等比數列,若不等式(qn(n+1)(n+a)≤e對任意的n∈N*恒成立,求實數a的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知z=(m2-1)+mi在復平面內對應的點在第二象限,則實數m的取值范圍是(  )
A.(-1,1)B.(-1,0)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知數列{an}滿足$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}$+n.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=$\frac{{{{(-1)}^n}{a_n}}}{2}$,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,BB1=5,AB=4,BC=2.
(1)求三棱柱${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$的體積;
(2)若M是棱AC中點,求B1M與平面ABC所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知點M的極坐標為(6,$\frac{11π}{6}$),則點M關于y軸對稱的點的直角坐標為(  )
A.(-3$\sqrt{3}$,-3)B.(3$\sqrt{3}$,-3)C.(-3$\sqrt{3}$,3)D.(3$\sqrt{3}$,3)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费中文字幕日韩欧美 | 欧美一级日韩片 | 日韩喷潮 | 一级欧美日韩 | 一区二区三区久久 | 国产精品久久免费视频 | 一区在线免费观看 | 成人高清视频在线观看 | 亚洲片在线观看 | 精品九九 | 日韩精品在线一区二区 | 欧美亚洲另类在线 | 精品久久国产 | 99这里只有精品视频 | 亚洲综合色网 | 91麻豆精品国产91久久久资源速度 | 国产富婆一级全黄大片 | 欧美性区 | 亚洲精品一区二区三区中文字幕 | 欧美久久一区 | 中文字幕亚洲在线观看 | 精品欧美一区二区在线观看视频 | 久久91精品 | 麻豆久久 | 中文日韩在线 | 国产三级在线免费观看 | 91精品国产91久久久久久蜜臀 | 久久久久国产一区二区三区小说 | 性大毛片视频 | 精品国产aⅴ一区二区 | 日韩精品免费视频 | 中文字幕婷婷 | 一级黄色毛片子 | 色婷婷成人网 | 午夜激情影院 | 久久伊人操 | 精品一区视频 | 狠狠干美女| 羞羞在线视频 | 婷婷伊人 | 国产极品一区二区 |