日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.定義在(0,+∞)上的函數f(x)滿足:(1)當$x∈[{\frac{1}{2},1})$時,f(x)=$\frac{1}{2}-|{2x-\frac{3}{2}}$|;(2)f(2x)=2f(x),則關于x的函數F(x)=f(x)-a的零點從小到大依次為x1,x2,…,xn…x2n,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n-1+x2n=3×(2n-1).

分析 f(x)=$\left\{\begin{array}{l}{2-2x\\;\\;\frac{3}{4}≤x<1}\\{2x-1\\;\\;\frac{1}{2}≤x<\frac{3}{4}}\end{array}\right.$,此時f(x)∈[0,$\frac{1}{2}$],∵f(2x)=2f(x),∴x∈[1,2)時,f(x)∈[0,1],∴x∈[2,4)時,f(x)∈[0,2],…以此類推,
則F(x)=f(x)-a在區間(1,2)有2個零點,分別為x1,x2,且滿足x1+x2=2×$\frac{3}{2}$=3,
依此類推:x3+x4=6,…,x2n-1+x2n=3×2n-1.利用等比數列的前n項和公式即可得出.

解答 解:f(x)=$\left\{\begin{array}{l}{2-2x\\;\\;\frac{3}{4}≤x<1}\\{2x-1\\;\\;\frac{1}{2}≤x<\frac{3}{4}}\end{array}\right.$,此時f(x)∈[0,$\frac{1}{2}$],
∵f(2x)=2f(x),∴x∈[1,2)時,f(x)∈[0,1],∴x∈[2,4)時,f(x)∈[0,2],…以此類推,
則F(x)=f(x)-a在區間(1,2)有2個零點,分別為x1,x2,且滿足x1+x2=2×$\frac{3}{2}$=3,
依此類推:x3+x4=6,…,x2n-1+x2n=3×2n-1.如圖所示:

則x1+x2+…+x2n-1+x2n=3×(2n-1).
故答案為:3×(2n-1).

點評 本題考查了函數的圖象與性質、區間轉換、對稱性、等比數列的前n項和公式等基礎知識與基本技能,屬于難題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.已知F1,F2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的左右焦點,點A在雙曲線的右支上,點P(7,2)是平面內一定點,若對任意實數m,直線4x+3y+m=0與雙曲線C至多有一個公共點,則|AP|+|AF2|的最小值為(  )
A.2$\sqrt{37}$-6B.10-3$\sqrt{5}$C.8-$\sqrt{37}$D.2$\sqrt{5}$-2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若${({X-2})^5}={a_5}{X^5}+{a_4}{X^4}+{a_3}{X^3}+{a_2}{X^2}+{a_1}X+{a_0}$,則a1+a2+a3+a4+a5=(  )
A.-1B.31C.-33D.-31

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.{an}是等差數列,{bn}是等比數列,Tn是{bn}的前n項和,a1=b1=1,且滿足$\sqrt{{a_2}+2}+\sqrt{{b_2}-2}=2\sqrt{2}$,當a2+b2取最小值時,
(1)求Tn
(2)Sn是{|an|}的前n項和,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M、N分別是AF、BC的中點,
(1)求證:MN∥平面CDEF;
(2)求點B到平面MNF的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知橢圓$\frac{x^2}{5}$+$\frac{y^2}{m}$=1的離心率e=$\frac{{\sqrt{10}}}{5}$,則m的值為(  )
A.3B.$\frac{25}{3}$或 3C.$\sqrt{5}$D.$\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.三個數a=(-0.3)0,b=0.32,c=20.3的大小關系為(  )
A.a<b<0B.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.設等比數列{an}的公比q=1,前n項和為Sn,則$\frac{{S}_{4}}{{a}_{2}}$=(  )
A.2B.4C.$\frac{15}{2}$D.$\frac{17}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1D1中,E、P分別是BC、A1D1的中點.M、N分別是AE、CD1的中點,AD=AA1=$\frac{1}{2}$AB=2.
(1)求證:MN∥平面ADD1A1
(2)求直線MN與平面PAE所成角的正弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一级一片免费播放放a 男男成人高潮片免费网站 精品视频在线观看 | 国产这里只有精品 | 亚洲综合视频在线观看 | 91啦丨九色丨刺激 | 黄色综合网 | 国产高清免费 | 国产特黄 | 免费视频一区二区 | 少妇高潮av久久久久久 | 高清一区二区三区 | 日本天堂网| 激情做爰呻吟视频舌吻 | 成人在线视频免费 | 欧美久久一区二区 | 中文毛片| 咪咪色影院 | 天天色天天 | 欧美福利视频 | 国产又色又爽又黄又免费 | 一区二区三区精品 | 蜜臀久久99精品久久久久久宅男 | 日韩欧美在线视频 | 成人在线网 | 精品国产乱码久久久久久蜜臀网站 | 午夜视频免费 | 日本黄色三级视频 | 人人射人人| 91黄色片 | 欧美日皮视频 | 中文字幕丰满人伦在线 | 久久草视频 | 久久久久免费视频 | 久久久精品免费 | 熟女毛片| 中文在线字幕免费观看 | 综合色在线 | 国产精品欧美日韩 | 免费视频一区 | 国产又粗又黄又爽又硬的视频 | 亚洲一区二区在线播放 | 在线看亚洲 |