日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE=30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足$tanθ=\frac{3}{4}$.
(1)若設計AB=18米,AD=6米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設計AB與AD的長度,可使得活動中心的截面面積最大?(注:計算中π取3)

分析 (1)以點A為坐標原點,AB所在直線為x軸,建立平面直角坐標系.設太陽光線所在直線方程為$y=-\frac{3}{4}x+b$,利用直線與圓相切,求出直線方程,令x=30,得EG=1.5米<2.5米,即可得出結論;
(2)欲使活動中心內部空間盡可能大,則影長EG恰為2.5米,即可求出截面面積最大

解答 解:如圖所示,以點A為坐標原點,AB所在直線為x軸,建立平面直角坐標系.
(1)因為AB=18,AD=6,所以半圓的圓心為H(9,6),
半徑r=9.設太陽光線所在直線方程為$y=-\frac{3}{4}x+b$,
即3x+4y-4b=0,…(2分)
則由$\frac{|27+24-4b|}{{\sqrt{{3^2}+{4^2}}}}=9$,
解得b=24或$b=\frac{3}{2}$(舍).
故太陽光線所在直線方程為$y=-\frac{3}{4}x+24$,…(5分)
令x=30,得EG=1.5米<2.5米.
所以此時能保證上述采光要求…(7分)
(2)設AD=h米,AB=2r米,則半圓的圓心為H(r,h),半徑為r.
欲使活動中心內部空間盡可能大,則影長EG恰為2.5米,則此時點G為(30,2.5),
設過點G的上述太陽光線為l1,則l1所在直線方程為y-$\frac{5}{2}$=-$\frac{3}{4}$(x-30),
即3x+4y-100=0…(10分)
由直線l1與半圓H相切,得$r=\frac{|3r+4h-100|}{5}$.
而點H(r,h)在直線l1的下方,則3r+4h-100<0,
即$r=-\frac{3r+4h-100}{5}$,從而h=25-2r…(13分)
又$S=2rh+\frac{1}{2}π{r^2}=2r(25-2r)+\frac{3}{2}×{r^2}$=$-\frac{5}{2}{r^2}+50r=-\frac{5}{2}{(r-10)^2}+250≤250$.
當且僅當r=10時取等號.
所以當AB=20米且AD=5米時,可使得活動中心的截面面積最大…(16分)

點評 本題考查利用數學知識解決實際問題,考查直線與圓的位置關系,考查配方法的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.對于函數f(x),若存在區間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數f(x)為“可等域函數”,區間A為函數的一個“可等域區間”.給出下列四個函數:①f(x)=|x|;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=log2(2x-2).其中存在唯一“可等域區間”的“可等域函數”的個數是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.函數f(x)=$\frac{1}{x}$-log2$\frac{1+ax}{1-x}$為奇函數,則實數a=1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知集合A={-1,0,1},B=(-∞,0),則A∩B={-1}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.將矩形ABCD繞邊AB旋轉一周得到一個圓柱,AB=3,BC=2,圓柱上底面圓心為O,△EFG為下底面圓的一個內接直角三角形,則三棱錐O-EFG體積的最大值是4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.某年級星期一至星期五每天下午排3節課,每天下午隨機選擇1節作為綜合實踐課(上午不排該課程),張老師與王老師分別任教甲、乙兩個班的綜合實踐課程.
(1)求這兩個班“在星期一不同時上綜合實踐課”的概率;
(2)設這兩個班“在一周中同時上綜合實踐課的節數”為X,求X的概率分布表與數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.若α∈(0,π),且sin2α+2cos2α=2,則tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知點A(2,m),B(3,3),直線AB的斜率為1,那么m的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.設函數f(x)=$\sqrt{x}$的反函數是f-1(x),則f-1(4)=16.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 嫩草视频在线观看免费 | 大胆裸体gogo毛片免费看 | 亚洲九九| 国产精品久久久久9999鸭 | 成人欧美一区二区三区视频xxx | 成人精品一区二区三区中文字幕 | 天天天综合网 | 超碰五月 | 色婷婷综合网 | 四虎网站| 日本天堂网站 | 色一情 | 99re6在线| 91欧美激情一区二区三区成人 | 好看的一级毛片 | 欧美 日韩 中文字幕 | 一区二区三区四区av | av先锋资源| 天天躁日日躁狠狠躁av麻豆 | 天天干欧美 | 午夜视频在线观看网站 | 欧美亚洲日本国产 | 久久人人爽人人爽 | 精品一区二区视频 | 国产精品一级毛片在线 | 日本黄色电影网站 | 日韩视频国产 | 国产精品乱码一区二区三区 | 国产一二三区不卡 | 欧美视频在线播放 | 爱啪导航一精品导航站 | 亚洲精品91 | 亚洲精品久久 | 久久久久久久久久影院 | 精品一区国产 | 久精品视频 | 久久久国产精品 | 日韩在线视频一区 | 欧美日韩在线视频一区二区 | 亚洲伊人影院 | 精品一区二区三区国产 |