日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,若$\overrightarrow a•\overrightarrow b=24$,且S11=143,數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足${2^{{a_n}-1}}=λ{(lán)T_n}-({a_1}-1)(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和Mn
(Ⅱ)是否存在非零實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由.

分析 (Ⅰ)設(shè)數(shù)列{an}的公差為d,利用數(shù)量積運(yùn)算性質(zhì)可得:a1+a10=24,又S11=143,解得a1,d,可得數(shù)列的通項(xiàng)公式,再利用“裂項(xiàng)求和”方法即可得出.
(Ⅱ)由${2^{{a_n}-1}}=λ{(lán)T_n}-({a_1}-1)(n∈{N^*})$,且a1=3,可得${T_n}=\frac{1}{λ}{4^n}+\frac{2}{λ}$,對(duì)n分類討論,利用等比數(shù)列的定義即可得出.

解答 解:(Ⅰ)設(shè)數(shù)列{an}的公差為d,由$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,$\overrightarrow a•\overrightarrow b=24$,
∴a1+a10=24,又S11=143,
解得a1=3,d=2,因此數(shù)列的通項(xiàng)公式是${a_n}=2n+1(n∈{N^*})$,
∴$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{2}({\frac{1}{2n+1}-\frac{1}{2n+3}})$,
∴${M_n}=\frac{1}{2}({\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3}})=\frac{n}{6n+9}$.
(Ⅱ)∵${2^{{a_n}-1}}=λ{(lán)T_n}-({a_1}-1)(n∈{N^*})$,且a1=3,可得${T_n}=\frac{1}{λ}{4^n}+\frac{2}{λ}$,
當(dāng)n=1時(shí),${b_1}=\frac{6}{λ}$;
當(dāng)n≥2時(shí),${b_n}={T_n}-{T_{n-1}}=\frac{3}{λ}{4^{n-1}}$,此時(shí)有$\frac{b_n}{{{b_{n-1}}}}=4$,
若是{bn}等比數(shù)列,則有有$\frac{b_2}{b_1}=4$,而${b_1}=\frac{6}{λ}$,${b_2}=\frac{12}{λ}$,彼此相矛盾,
故不存在非零實(shí)數(shù),使數(shù)列為等比數(shù)列.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的定義與通項(xiàng)公式、“裂項(xiàng)求和”方法、向量的數(shù)量積運(yùn)算性質(zhì),考查了分類討論、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn).
(1)證明:B1M⊥平面ABM;
(2)求異面直線A1M和C1D1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若點(diǎn)P在$-\frac{4}{3}π$角的終邊上,且P的坐標(biāo)為(-1,y),則y等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中,正確的是(  )
A.若a>b,c>d,則ac>bdB.若ac>bc,則a>b
C.若a>b,則$\frac{1}{a}<\frac{1}{b}$D.若a>b,c<d,則a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記f(x)=2|x|,a=f$({{{log}_{\frac{1}{3}}}4}),b=f({{{log}_2}5}$),c=f(0),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.對(duì)于函數(shù)f(x)與g(x)和區(qū)間D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,則稱x0是函數(shù)f(x)與g(x)在區(qū)間D上的“友好點(diǎn)”.現(xiàn)給出兩個(gè)函數(shù):
①f(x)=x2,g(x)=2x-2;②$f(x)=\sqrt{x}$,g(x)=x+2;
③f(x)=e-x,$g(x)=-\frac{1}{x}$;④f(x)=lnx,g(x)=x.
則在區(qū)間(0,+∞)上存在唯一“友好點(diǎn)”的是①④.(填上所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,a=1,c=$\sqrt{3}$,∠A=30°,則b等于1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:?x∈R,x2-2(m-3)x+1=0,命題q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)m的取值范圍
(2)若p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)復(fù)數(shù)z滿足(z+i)i=-3+4i(i為虛數(shù)單位),則z的模為$2\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧美专区在线 | 久久精品久久久久久久久久久久久 | 国产精品永久免费视频 | 成人99 | 亚洲综合在线播放 | 色婷婷综合久久久久中文一区二区 | 91秦先生艺校小琴 | 在线视频一二三 | 亚洲欧美国产精品久久 | 午夜视频在线观看网站 | 蜜臀视频在线观看 | 一区二区中文字幕 | 国产精品美女www爽爽爽动态图 | 蜜桃精品久久久久久久免费影院 | 国产精品久久av | 亚洲久视频 | 久久精品一级 | 国产乱码精品一区二区 | 日韩av在线一区二区三区 | 亚洲视频一区二区三区四区 | 九一在线观看 | 一二三区在线 | 按摩高潮japanesevideo | 中文字幕在线看 | 98久久久 | 久久亚洲综合 | 日韩成人精品视频 | 久久se精品一区精品二区 | 国产最新地址 | 毛片国产| 精品一区二区三区国产 | 青青草免费在线视频 | 一区二区免费 | 日韩色在线 | 国产成人在线网站 | 欧美精品影院 | 玖草资源 | 欧美精品1区2区3区 亚洲区在线 | 国产欧美日韩在线 | 天天草天天色 | 韩国三级中文字幕hd有奶水 |