【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,且此拋物線的準(zhǔn)線被橢圓
截得的弦長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線交橢圓
于
、
兩點(diǎn),線段
的中點(diǎn)為
,直線
是線段
的垂直平分線,試問(wèn)直線
是否過(guò)定點(diǎn)?若是,請(qǐng)求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)直線
過(guò)定點(diǎn)
,詳見(jiàn)解析.
【解析】
(1)由題意得出,由題意知點(diǎn)
在橢圓
上,由此得出關(guān)于
、
的方程組,求出
、
的值,即可得出橢圓
的標(biāo)準(zhǔn)方程;
(2)解法一:由題意可知,直線的斜率不為零,然后分直線
的斜率存在且不為零和直線
的斜率不存在兩種情況討論,在第一種情況下,設(shè)直線
的方程為
,設(shè)點(diǎn)
、
,將直線
的方程與橢圓
的方程聯(lián)立,列出韋達(dá)定理,由
得出
,并寫(xiě)出直線
的方程,由此可得出直線
所過(guò)定點(diǎn)的坐標(biāo);在第二種情況下可得出直線
為
軸,即可得出直線
過(guò)定點(diǎn)
,由此得出結(jié)論;
解法二:由題意可知,直線的斜率不為零,然后分直線
的斜率存在且不為零和直線
的斜率不存在兩種情況討論,在第一種情況下,由點(diǎn)差法可得出直線
的斜率為
,可寫(xiě)出直線
的方程,即可得出直線
所過(guò)定點(diǎn)的坐標(biāo);在第二種情況下可得出直線
為
軸,即可得出直線
過(guò)定點(diǎn)
,由此得出結(jié)論.
(1)拋物線的焦點(diǎn)為
,準(zhǔn)線為
.
由于拋物線的準(zhǔn)線
截橢圓
所得弦長(zhǎng)為
,
則點(diǎn)在橢圓
上,則有
,解得
,
因此,橢圓的標(biāo)準(zhǔn)方程為
;
(2)法一:顯然點(diǎn)在橢圓
內(nèi)部,故
,且直線
的斜率不為
.
當(dāng)直線的斜率存在且不為
時(shí),易知
,設(shè)直線
的方程為
,
代入橢圓方程并化簡(jiǎn)得:.
設(shè),
,則
,解得
.
因?yàn)橹本是線段
的垂直平分線,
故直線的方程為
,即
,即
.
令,此時(shí)
,
,于是直線
過(guò)定點(diǎn)
;
當(dāng)直線的斜率不存在時(shí),易知
,此時(shí)直線
,故直線
過(guò)定點(diǎn)
.
綜上所述,直線過(guò)定點(diǎn)
;
法二:顯然點(diǎn)在橢圓
內(nèi)部,故
,且直線
的斜率不為
.
當(dāng)直線的斜率存在且不為
時(shí),設(shè)
,
,
則有,
,
兩式相減得,
由線段的中點(diǎn)為
,則
,
,
故直線的斜率
,
因?yàn)橹本是線段
的垂直平分線,
故直線的方程為
,即
,即
.
令,此時(shí)
,
,于是直線
過(guò)定點(diǎn)
;
當(dāng)直線的斜率不存在時(shí),易知
,此時(shí)直線
,故直線
過(guò)定點(diǎn)
綜上所述,直線過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,動(dòng)點(diǎn)
(其中
)到點(diǎn)
的距離的
倍與點(diǎn)
到直線
的距離的
倍之和記為
,且
.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線
與軌跡
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月1日,在慶祝新中國(guó)成立70周年閱兵中,由我國(guó)自主研制的軍用飛機(jī)和軍用無(wú)人機(jī)等參閱航空裝備分秒不差飛越天安門(mén),壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開(kāi)艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測(cè)站觀測(cè)到一架參閱直升飛機(jī)以千米/小時(shí)的速度在同一高度向正東飛行,如圖,第一次觀測(cè)到該飛機(jī)在北偏西
的方向上,1分鐘后第二次觀測(cè)到該飛機(jī)在北偏東
的方向上,仰角為
,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將曲線上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的
倍(縱坐標(biāo)不變),得到
的圖象,則下列說(shuō)法正確的是( )
A.的圖象關(guān)于直線
對(duì)稱(chēng)
B.在
上的值域?yàn)?/span>
C.的圖象關(guān)于點(diǎn)
對(duì)稱(chēng)
D.的圖象可由
的圖象向右平移
個(gè)單位長(zhǎng)度得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為
,橢圓
的離心率正好是雙曲線
的離心率的倒數(shù),橢圓
的短軸長(zhǎng)等于拋物線
上一點(diǎn)
到拋物線焦點(diǎn)
的距離.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓
的兩個(gè)交點(diǎn)為
,
兩點(diǎn),已知圓
:
與
軸的交點(diǎn)分別為
,
(點(diǎn)
在
軸的正半軸),且直線
與圓
相切,求
的面積與
的面積乘積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面
底面
,其中底面
為等腰梯形,
,
,
,
,
為
的中點(diǎn).
(1)證明:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)內(nèi)角
的對(duì)邊分別為
,若
,
,
,且
,試求角
和角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
.
(1)當(dāng)時(shí),求不等式
的解集;
(2)已知恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,其中
為自然對(duì)數(shù)的底數(shù),
.
(1)求證:;
(2)若對(duì)于任意,
恒成立,求
的取值范圍;
(3)若存在,使
,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com