A. | $({-∞,-1}]∪[{\frac{2}{3},+∞})$ | B. | $({-∞,-1}]∪[{\frac{1}{2},+∞})$ | C. | $({-∞,-\frac{1}{2}}]∪[{\frac{1}{3},+∞})$ | D. | $({-∞,-\frac{1}{2}}]∪[{\frac{1}{6},+∞})$ |
分析 令m+n=a,則mn=a+3,即m、n是方程x2-ax+a+3=0的兩個正實根,解得a的范圍,不等式(m+n)x2+2x+mn-13≥0恒成立?不等式ax2+2x+a-10≥0在a≥6時恒成立.即函數f(a)=a(x2+1)+2x-10≥0在a∈[6,+∞)恒成立.
解答 解:令m+n=a,則mn=a+3,
故m、n是方程x2-ax+a+3=0的兩個正實根,∴$\left\{\begin{array}{l}{△={a}^{2}-4a-13≥0}\\{a>0}\\{a+3>0}\end{array}\right.$,解得a≥6,
不等式(m+n)x2+2x+mn-13≥0恒成立?不等式ax2+2x+a-10≥0在a≥6時恒成立.
即函數f(a)=a(x2+1)+2x-10≥0在a∈[6,+∞)恒成立.
f(6)=6(x2+1)+2x-10≥0⇒x≥$\frac{2}{3}$或x≤-1.
故選:A.
點評 本題考查了函數恒成立問題,轉化思想是解題的關鍵,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 平行于同一平面的兩條直線平行 | B. | 平行于同一直線的兩個平面平行 | ||
C. | 垂直于同一直線的兩條直線平行 | D. | 垂直于同一平面的兩條直線平行 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com