分析 (1)求出函數的導數,通過m的范圍,判斷導函數的符號,推出函數的單調區間.
(2)利用函數的單調性,判斷函數的極值,轉化對于任意x1,x2∈[-1,1],都有f(x1)-f(x2)≤e-1,得到不等式組,即可求解m的范圍.
解答 (本題滿分12分)
解:(1)函數f(x)=emx+x2-mx,可得f′(x)=m(emx-1)+2x.
若m≥0,則當x∈(-∞,0)時,emx-1≤0,f′(x)<0;
當x∈(0,+∞)時,emx-1≥0,f′(x)>0.
若m<0,則當x∈(-∞,0)時,emx-1>0,f′(x)<0;
當x∈(0,+∞)時,emx-1<0,f′(x)>0.
所以,f(x)在(-∞,0)時單調遞減,在(0,+∞)單調遞增.
(2)由(1)知,對任意的m,f(x)在[-1,0]單調遞減,在[0,1]單調遞增,故f(x)在x=0處取得最小值.
所以對于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的要條件是$\left\{\begin{array}{l}f(1)-f(0)≤e-1\\ f({-1})-f(0)≤e-1\end{array}\right.$,
即$\left\{\begin{array}{l}{e^m}-m≤e-1\\{e^{-m}}+m≤e-1\end{array}\right.$,①
令g(x)=ex-x,則g(x)=ex-1,g(x)在(0,+∞)單調遞增,在(-∞,0單調遞減,不妨設g(x0)=e-1,因為$g({-1})=1-\frac{1}{e}<e-1,g({-2})=2-\frac{1}{e^2}>e-1$,所以x0∈(-2,-1),
所以$\left\{\begin{array}{l}-{x_0}≤m≤1\\-{x_0}≤-m≤1\end{array}\right.$,綜上,m的取值范圍為[-1,1].
點評 本題考查導數與函數的單調性的判斷單調區間的求法,考查分析問題解決問題的能力、轉化思想以及分類討論思想的應用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①④ | D. | ①②③ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-1,1] | B. | [-2,1] | C. | $[{-2,\sqrt{3}}]$ | D. | $[{-1,\sqrt{3}}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{25\sqrt{5}}{4}$ | B. | $\frac{5\sqrt{7}}{2}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com