A. | ${a_n}=\frac{1}{n}$ | B. | ${a_n}=\frac{1}{n-1}$ | C. | ${a_n}=\frac{n}{n+1}$ | D. | ${a_n}=\frac{1}{n+1}$ |
分析 數列{an}滿足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,利用等差數列的通項公式即可得出.
解答 解:數列{an}滿足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∴數列{$\frac{1}{{a}_{n}}$}是等差數列,公差為1,首項為1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n.
則數列{an}的通項公式為:an=$\frac{1}{n}$.
故選:A.
點評 本題考查了等差數列的通項公式、數列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2x-y-2=0 | B. | x-2y-2=0 | C. | x-2y+2=0 | D. | 2x+y+2=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com