日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.已知正四棱錐的側棱與底面成60°角,則此四棱錐的底邊與不相鄰的側棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.

分析 由題意畫出圖形,設正四棱錐的底面邊長為a,可得AC=$\sqrt{2}a$,AO=$\frac{\sqrt{2}}{2}a$,再由側棱與底面成60°角,求得側棱長,解直角三角形可得四棱錐的底邊與不相鄰的側棱所成角的余弦值.

解答 解:如圖,設正四棱錐的底面邊長為a,則AC=$\sqrt{2}a$,
∴AO=$\frac{\sqrt{2}}{2}a$,又側棱與底面成60°角,∴PA=$\sqrt{2}a$,PB=$\sqrt{2}a$,
在△PAB中,由$PA=PB=\sqrt{2}a$,AB=a,
可得cos∠PAB=$\frac{\frac{a}{2}}{\sqrt{2}a}=\frac{\sqrt{2}}{4}$.
∴四棱錐的底邊與不相鄰的側棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.

點評 本題考查異面直線所成角,考查了數形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.已知反比例函數y=$\frac{6}{x}$的圖象與正比例函數y=$\frac{2}{3}$x的圖象交于A,B兩點,B點坐標為(-3,-2),則A點的坐標為( 。
A.(-1,-6)B.(1,6)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,則C=(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.向量$\overrightarrow{m}$,$\overrightarrow{n}$,分別對應復數m,n,且m=$\frac{3}{a+5}$-(10-a2)i,n=$\frac{2}{1-a}$+(2a-5)i,其中a∈R,若m+n可以與任何實數比較大小,求$\overrightarrow{m}$與$\overrightarrow{n}$的數量積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知Rt△ABC的頂點分別為A(1,2),B(-1,-2).,C(1,-2),圓E是△ABC的外接圓.
(I)求圓E的方程;
(II)求直線lmx-y-m+1=0被圓E截得的最短弦長及對應的直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為2x+y=0,一個焦點為$(\sqrt{5},0)$,則a+b=3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.通過研究學生的學習行為,心理學家發現,學生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學生的興趣激增;中間有一段不太長的時間,學生的興趣保持較理想的狀態;隨后學生的注意力開始分散.分析結果和實驗表明,用f(x)表示學生掌握和接受概念的能力(f(x)的值越大,表示學生的接受能力越強),x表示提出和講授概念的時間(單位:min),可有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)講課開始后5min和講課開始后20min比較,何時學生的注意力更集中?
(2)講課開始后多少分鐘,學生的注意力最集中,能持續多久?
(3)一道數學難題,需要講解13min,并且要求學生的注意力至少達到55,那么老師能否在學生達到所需狀態下講授完這道題目?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若函數f(x)滿足$f(x)=1+f(\frac{1}{2}){log_2}x$,則f(4)=2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知拋物線C的方程x2=2px,M(2,1)為拋物線C上一點,F為拋物線的焦點.
( I)求|MF|;
( II)設直線l2:y=kx+m與拋物線C有唯一公共點P,且與直線l1:y=-1相交于點Q,試問,在坐標平面內是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国内久久精品 | 麻豆精品国产91久久久久久 | 免费看91| 久久小视频 | 久久草视频 | 极品久久 | 亚洲伦理一区 | 国产在线第一页 | 国产一区二区三区久久久 | 伊人干综合 | 国产高清在线不卡 | 国产三区在线观看视频 | 国产精品久久影院 | 国产成人高清精品免费5388 | 97人人插 | 另类 综合 日韩 欧美 亚洲 | 欧美中文字幕在线观看 | 亚洲中午字幕 | 日韩免费在线观看视频 | 黄色片毛片 | 特黄视频 | 中文字幕综合在线分类 | 婷婷精品 | 制服 丝袜 激情 欧洲 亚洲 | 国产一区二区三区在线 | 三区视频 | 国产精品久久久久久亚洲影视 | 中文字幕99 | 一区二区免费在线播放 | 欧美激情一区二区三区 | 一区二区三区 在线 | 色无欲天天天影视综合网 | av毛片在线免费看 | 日本中文字幕一区二区 | 日韩激情一区二区 | 国产高清精品一区二区三区 | 巨骚综合| 一区二区三区四区在线 | 青青成人网 | 亚洲欧美视频 | 综合久草 |