【題目】共享單車的投放,方便了市民短途出行,被譽為中國“新四大發明”之一.某市為研究單車用戶與年齡的相關程度,隨機調查了100位成人市民,統計數據如下:
不小于40歲 | 小于40歲 | 合計 | |
單車用戶 | 12 | 18 | 30 |
非單車用戶 | 38 | 32 | 70 |
合計 | 50 | 50 | 100 |
(1)從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關;
(2)將此樣本的頻率做為概率,從該市單車用戶中隨機抽取3人,記不小于40歲的單車用戶的人數為,求
的分布列與數學期望.
下面臨界值表供參考:
P( | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
科目:高中數學 來源: 題型:
【題目】已知為拋物線
的焦點,過
的動直線交拋物線
于
,
兩點.當直線與
軸垂直時,
.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線
相交于點
,拋物線
上存在點
使得直線
,
,
的斜率成等差數列,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全球關注的抗擊“新冠肺炎”中,某跨國科研中心的一個團隊,研制了甲、乙兩種治療“新冠肺炎”新藥,希望知道哪種新藥更有效,為此進行動物試驗,試驗方案如下:
第一種:選取共10只患病白鼠,服用甲藥后某項指標分別為:
;
第二種:選取共10只患病白鼠,服用乙藥后某項指標分別為:
;
該團隊判定患病白鼠服藥后這項指標不低于85的確認為藥物有效,否則確認為藥物無效.
(1)已知第一種試驗方案的10個數據的平均數為89,求這組數據的方差;
(2)現需要從已服用乙藥的10只白鼠中隨機抽取7只,記其中服藥有效的只數為,求
的分布列與期望;
(3)該團隊的另一實驗室有1000只白鼠,其中900只為正常白鼠,100只為患病白鼠,每用新研制的甲藥給所有患病白鼠服用一次,患病白鼠中有變為正常白鼠,但正常白鼠仍有
變為患病白鼠,假設實驗室的所有白鼠都活著且數量不變,且記服用
次甲藥后此實驗室正常白鼠的只數為
.
(i)求并寫出
與
的關系式;
(ii)要使服用甲藥兩次后,該實驗室正常白鼠至少有950只,求最大的正整數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為等腰直角三角形,
,D為AC上一點,將
沿BD折起,得到三棱錐
,且使得
在底面BCD的投影E在線段BC上,連接AE.
(1)證明:;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
的參數方程為
(
為參數),以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系,圓
的極坐標方程為
,設圓
與圓
的公共弦所在直線為
.
(1)求直線的極坐標方程;
(2)若以坐標原點為中心,直線順時針方向旋轉
后與圓
、圓
分別在第一象限交于
、
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數,該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
(1)根據表中數據可知,頻數與日需求量
(單位:個)線性相關,求
關于
的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為24,記當日這款新面包獲得的總利潤為(單位:元).
(ⅰ)若日需求量為15個,求;
(ⅱ)求的分布列及其數學期望.
相關公式:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
(1)經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為,
的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在
內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com