分析 (I)根據橢圓和拋物線的定義、性質列方程組求出a,b,p即可得出方程;
(II)設AP方程為x=my+1,聯立方程組得出B,P,Q三點坐標,從而得出直線BQ的方程,解出D點坐標,根據三角形的面積列方程解出m即可得出答案.
解答 (Ⅰ)解:設F的坐標為(-c,0).
依題意可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{a=\frac{p}{2}}\\{a-c=\frac{1}{2}}\end{array}\right.$,
解得a=1,c=$\frac{1}{2}$,p=2,于是b2=a2-c2=$\frac{3}{4}$.
所以,橢圓的方程為x2+$\frac{4{y}^{2}}{3}$=1,拋物線的方程為y2=4x.
(Ⅱ)解:直線l的方程為x=-1,設直線AP的方程為x=my+1(m≠0),
聯立方程組$\left\{\begin{array}{l}{x=-1}\\{x=my+1}\end{array}\right.$,解得點P(-1,-$\frac{2}{m}$),故Q(-1,$\frac{2}{m}$).
聯立方程組$\left\{\begin{array}{l}{x=my+1}\\{{x}^{2}+\frac{4{y}^{2}}{3}=1}\end{array}\right.$,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=-$\frac{6m}{3{m}^{2}+4}$.
∴B($\frac{-3{m}^{2}+4}{3{m}^{2}+4}$,$\frac{-6m}{3{m}^{2}+4}$).
∴直線BQ的方程為($\frac{-6m}{3{m}^{2}+4}$-$\frac{2}{m}$)(x+1)-($\frac{-3{m}^{2}+4}{3{m}^{2}+4}+1$)(y-$\frac{2}{m}$)=0,
令y=0,解得x=$\frac{2-3{m}^{2}}{3{m}^{2}+2}$,故D($\frac{2-3{m}^{2}}{3{m}^{2}+2}$,0).
∴|AD|=1-$\frac{2-3{m}^{2}}{3{m}^{2}+2}$=$\frac{6{m}^{2}}{3{m}^{2}+2}$.
又∵△APD的面積為$\frac{\sqrt{6}}{2}$,∴$\frac{1}{2}×$$\frac{6{m}^{2}}{3{m}^{2}+2}$×$\frac{2}{|m|}$=$\frac{\sqrt{6}}{2}$,
整理得3m2-2$\sqrt{6}$|m|+2=0,解得|m|=$\frac{\sqrt{6}}{3}$,∴m=±$\frac{\sqrt{6}}{3}$.
∴直線AP的方程為3x+$\sqrt{6}$y-3=0,或3x-$\sqrt{6}$y-3=0.
點評 本題考查了橢圓與拋物線的定義與性質,直線與橢圓的位置關系,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (0,1]∪[2$\sqrt{3}$,+∞) | B. | (0,1]∪[3,+∞) | C. | (0,$\sqrt{2}$)∪[2$\sqrt{3}$,+∞) | D. | (0,$\sqrt{2}$]∪[3,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ω=$\frac{2}{3}$,φ=$\frac{π}{12}$ | B. | ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$ | C. | ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$ | D. | ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com